首页> 美国卫生研究院文献>other >Preservation of Mitochondrial Function with Cardiopulmonary Resuscitation in Prolonged Cardiac Arrest in Rats
【2h】

Preservation of Mitochondrial Function with Cardiopulmonary Resuscitation in Prolonged Cardiac Arrest in Rats

机译:在延长大鼠心脏骤停线粒体功能的心肺复苏的保鲜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During cardiac arrest (CA), myocardial perfusion is solely dependent on cardiopulmonary resuscitation (CPR) although closed-chest compressions only provide about 10–20% of normal myocardial perfusion. The study was conducted in a whole animal CPR model to determine whether CPR-generated oxygen delivery preserves or worsens mitochondrial function. Male Sprague-Dawley rats (400–450 g) were randomly divided into four groups: 1) BL (instrumentation only, no cardiac arrest), 2) CA15 (15 min cardiac arrest without CPR), 3) CA25 (25 min cardiac arrest without CPR) and 4) CPR (15 min cardiac arrest, followed by 10 min CPR). The differences between groups were evaluated by measuring mitochondrial respiration, electron transport chain (ETC) complex activities and mitochondrial ultrastructure by transmission electron microscopy (TEM). The CA25 group had the greatest impairment of mitochondrial respiration and ETC complex activities (I–III). In contrast, the CPR group was not different from the CA15 group regarding all measures of mitochondrial function. Complex I was more susceptible to ischemic injury than the other complexes and was the major determinant of mitochondrial dysfunction. Observations of mitochondrial ultrastructure by TEM were compatible with the biochemical results. The findings suggest that, despite low blood flow and oxygen delivery, CPR is able to preserve heart mitochondrial function and viability during ongoing global ischemia. Preservation of complex I activity and mitochondrial function during cardiac arrest may be an important mechanism underlying the beneficial effects of CPR which have been shown in clinical studies.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号