首页> 美国卫生研究院文献>other >Characterization of the SgcF Epoxide Hydrolase Supporting an (R)-Vicinal Diol Intermediate for Enediyne Antitumor Antibiotic C-1027 Biosynthesis
【2h】

Characterization of the SgcF Epoxide Hydrolase Supporting an (R)-Vicinal Diol Intermediate for Enediyne Antitumor Antibiotic C-1027 Biosynthesis

机译:支持(R) - 乙上二醇中间体的SGCF环氧化物水解酶对Enediyne抗肿瘤抗生素C-1027生物合成的表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

C-1027 is a chromoprotein antitumor antibiotic consisting of an apo-protein and the C-1027 chromophore. The C-1027 chromophore possesses four distinct structural moieties – an enediyne core, a deoxy aminosugar, a benzoxazolinate, and an (S)-3-chloro-5-hydroxy-β-tyrosine – the latter two of which are proposed to be appended to the enediyne core via a convergent biosynthetic strategy. Here we report the in vitro characterization of SgcF, an epoxide hydrolase from the C-1027 biosynthetic gene cluster that catalyzes regio- and stereospecific hydrolysis of styrene oxide, serving as an enediyne core epoxide intermediate mimic, to form a vicinal diol. Abolishment of C-1027 production in the ΔsgcF mutant strain Streptomyces globisporus SB1010 unambiguously establishes that sgcF plays an indispensable role in C-1027 biosynthesis. SgcF efficiently hydrolyzes (S)-styrene oxide, displaying an apparent Km of 0.6 ± 0.1 mM and kcat of 48 ± 1 min−1, via attack at the α-position to exclusively generate the (R)-phenyl vicinal diol, consistent with the stereochemistry of the C-1027 chromophore. These findings support the role of SgcF in the proposed convergent pathway for C-1027 biosynthesis, unveiling an (R)-vicinal diol as a key intermediate. Interestingly, SgcF can also hydrolyze (R)-styrene oxide to afford preferentially the (R)-phenyl vicinal diol via attack at the β-position, albeit with significantly reduced efficiency (apparent Km of 2.0 ± 0.4 mM and kcat = 4.3 ± 0.3 min−1). Although the latter activity unlikely contributes to C-1027 biosynthesis in vivo, such enantioconvergence arising from complementary regioselective hydrolysis of a racemic substrate could be exploited to engineer epoxide hydrolases with improved regio- and/or enantiospecificity.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号