首页> 美国卫生研究院文献>other >Detection and Localization of Markers of Oxidative Stress by In Situ Methods: Application in the Study of Alzheimer Disease
【2h】

Detection and Localization of Markers of Oxidative Stress by In Situ Methods: Application in the Study of Alzheimer Disease

机译:原位方法检测和定位氧化应激标志物:应用在阿尔茨海默病的研究中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Oxidative stress is a key factor involved in the development and progression of Alzheimer disease (AD), and it is well documented that free radical oxidative damage, particularly of neuronal lipids, proteins, nucleic acids, and sugars, is extensive in brains of AD patients. The complex chemistry of peroxynitrite has been the subject of intense study and is now evident that there are two principal pathways for protein modification: the first one involves homolytic hydroxyl radical-like chemistry that results in protein-based carbonyls and the second involves electrophilic nitration of vulnerable side chains, in particular the electron-rich aromatic rings of Tyr and Trp. In the presence of buffering bicarbonate, peroxynitrite forms a CO2 adduct, which augments its reactivity. Formation of 3-nitrotyrosine by this route has become the classical protein marker specifically for the presence of peroxynitrite. Protein-based carbonyls can be detected by two methods: (i) derivatization with 2,4-dinitrophenylhydrazine (DNPH) and detection of the protein-bound hydrazones using an enzyme-linked anti-2,4-dinitrophenyl antibody and (ii) derivatization with biotin-hydrazide and detection of the protein-bound acyl hydrazone with enzyme-linked avidin or streptavidin. Glycation of proteins by reducing sugars (Maillard reaction) results in a profile of time-dependent adduct evolution rendering susceptibility to oxidative elaboration. In addition, oxidative stress can result in oxidized sugar derivatives which can subsequently modify protein through a process known as glycoxidation. Of more general importance, oxidative stress results in lipid peroxidation and the production of a range of electrophilic and mostly bifunctional aldehydes that modify numerous proteins. The more important protein modifications are referred to as advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs). Protein modification can result in both non-cross-link and cross-link AGEs and ALEs, the latter arising from the potential bifunctional reactivity, such as that of the lipid-derived modifiers 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA). Oxidative damage to nucleic acids results in base modification, substitutions, and deletions. Among the most common modifications, 8-hydroxyguanosine (8OHG) is considered a signature of oxidative damage to nucleic acid.Cells are not passive to increased oxygen radical production but rather upregulate protective responses. In neurodegenerative diseases, heme oxygenase-1 (HO-1) induction is coincident with the formation of neurofibrillary tangles. This enzyme thatconverts heme, a prooxidant, to biliverdin/bilirubin (antioxidants) and free iron has been considered an antioxidant enzyme. But seen in the context of arresting apoptosis, HO-1 and tau may play a role in maintaining the neurons free from the apoptotic signal (cytochrome c), since tau has strong iron-binding sites. Given the importance of iron as a catalyst for the generation of reactive oxygen species, changes in proteins associated with iron homeostasis can be used as an index of cellular responses. One such class of proteins is the iron regulatory proteins (IRPs) that respond to cellular iron concentrations by regulating the translation of proteins involved in iron uptake, storage, and utilization. Therefore, IRPs are considered to be the central control components of cellular iron concentration.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号