首页> 美国卫生研究院文献>other >A conserved lysine in the thyroid hormone receptor (TR)-α1 DNA binding domain mutated in hepatocellular carcinoma serves as a sensor for transcriptional regulation
【2h】

A conserved lysine in the thyroid hormone receptor (TR)-α1 DNA binding domain mutated in hepatocellular carcinoma serves as a sensor for transcriptional regulation

机译:在肝细胞癌中突变的甲状腺激素受体(TR)-α1DNA结合结构域中的保守赖氨酸用作转录调节的传感器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nuclear receptors are hormone-regulated transcription factors that play key roles in normal physiology and development; conversely, mutant nuclear receptors are associated with a wide variety of neoplastic and endocrine disorders. Typically these receptor mutants function as dominant-negatives and can interfere with wild-type receptor activity. Dominant-negative thyroid hormone receptor (TR) mutations have been identified in over 60% of the human hepatocellular carcinomas (HCCs) analyzed. Most of these mutant TRs are defective for corepressor release or coactivator binding in vitro, accounting for their transcriptional defects in vivo. However, two HCC-TR mutants that function as dominant-negative receptors in cells display near-normal properties in vitro, raising questions as to the molecular basis behind their transcriptional defects. We report here that a single amino acid substitution, located at the same position in the DNA binding domain of both mutants, is responsible for their impaired transcriptional activation and dominant negative properties. Significantly, this amino acid, K74 in TRα, is highly conserved in all known nuclear receptors, and appears to function as an allosteric sensor that regulates the transcriptional activity of these receptors in response to binding to their DNA recognition sequences. We provide evidence that these two HCC mutants have acquired dominant-negative function as a result of disruption of this allosteric sensing. Our results suggest a novel mechanism by which nuclear receptors can acquire transcriptional defects and contribute to neoplastic disease.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号