首页> 美国卫生研究院文献>other >Year-round variability of ambient noise in temperate freshwater habitats and its implications for fishes
【2h】

Year-round variability of ambient noise in temperate freshwater habitats and its implications for fishes

机译:温带淡水栖息地环境噪声的全年变异及其对鱼类的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Changes in habitat acoustics over the year can potentially affect fish hearing and orientation to sound, especially in temperate climates. This is the first study where year-round changes in ambient noise in aquatic habitats were assessed. Seven different European fresh-water habitats were chosen for this study. Sound pressure level (SPL) and spectral composition of the ambient noise varied in both quiet stagnant habitats (lakes, backwaters) and in flowing habitats (streams, rivers). Linear equivalent SPL (LLeq, 60s) tended to be lower in stagnant habitats (means: 91.6–111.7 dB) than in flowing habitats (means: 111.2–133.4 dB). The changes in SPL were smallest in the river (means: 4.2–4.4 dB, maxima: 8.5–10.1 dB), whereas significantly higher values were measured in stagnant habitats and the stream (means: 9.9–14.9 dB, maxima: 25.1–30.9 dB). The spectral compositions of the ambient noise determined at different times of the year were highly correlated to each other at the river sites (mean cross-correlation coefficients: 0.85 and 0.94) and were weaker or not correlated at the other study sites (means: 0.24–0.76). The changes in ambient noise spectra were negatively correlated to changes in SPL, indicating that large changes in SPLs were accompanied by large changes in spectral composition and vice versa. Comparison of these ecoacoustical data with a preceding study ( in J Exp Biol 208:3533-3542, 2005) indicates that the auditory sensitivity in hearing specialists is affected by changes in ambient noise levels and spectra throughout a year and that this effect tends to be more pronounced in stagnant waters and the stream than at river sites. On the other hand, absolute noise levels result in a higher degree of masking in flowing waters.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号