首页> 美国卫生研究院文献>other >JTK_CYCLE: an efficient non-parametric algorithm for detecting rhythmic components in genome-scale datasets
【2h】

JTK_CYCLE: an efficient non-parametric algorithm for detecting rhythmic components in genome-scale datasets

机译:JTK_CYCLE:一种有效的非参数算法用于检测基因组规模数据集中的节奏成分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Circadian rhythms are oscillations of physiology, behavior, and metabolism that have period lengths of 24 hours. In several model organisms and man, circadian clock genes have been characterized and found to be transcription factors. Because of this, researchers have used microarrays to characterize global regulation of gene expression and algorithmic approaches to detect cycling. Here we present a new algorithm, JTK_CYCLE, designed to efficiently identify and characterize cycling variables in large datasets. Compared to COSOPT and the Fisher’s G test, two commonly used methods for detecting cycling transcripts, JTK_CYCLE distinguishes between rhythmic and non-rhythmic transcripts more reliably and efficiently. We also show that JTK_CYCLE’s increased resistance to outliers results in considerably greater sensitivity and specificity. Moreover, JTK_CYCLE accurately measures the period, phase, and amplitude of cycling transcripts, facilitating downstream analyses. Finally, it is several orders of magnitude faster than COSOPT, making it ideal for large scale data sets. We used JTK_CYCLE to analyze legacy data sets including NIH3T3 cells, which have comparatively low amplitude. JTK_CYCLE’s improved power led to the identification of a novel cluster of RNA-interacting genes whose abundance is under clear circadian regulation. These data suggest that JTK_CYCLE is an ideal tool for identifying and characterizing oscillations in genome-scale datasets.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号