首页> 美国卫生研究院文献>other >Phasic and sustained fear in humans elicits distinct patterns of brain activity
【2h】

Phasic and sustained fear in humans elicits distinct patterns of brain activity

机译:人类的映射和持续的恐惧引发了鲜明的脑活动模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aversive events are typically more debilitating when they occur unpredictably than predictably. Studies in humans and animals indicate that predictable and unpredictable aversive events can induce phasic and sustained fear, respectively. Research in rodents suggests that anatomically related but distinct neural circuits may mediate phasic and sustained fear. We explored this issue in humans by examining threat predictability in three virtual reality contexts, one in which electric shocks were predictably signaled by a cue, a second in which shocks occurred unpredictably but never paired with a cue, and a third in which no shocks were delivered. Evidence of threat-induced phasic and sustained fear was presented using fear ratings and skin conductance. Utilizing recent advances in functional magnetic resonance imaging (fMRI), we were able to conduct whole-brain fMRI at relatively high spatial resolution and still have enough sensitivity to detect transient and sustained signal changes in the basal forebrain. We found that both predictable and unpredictable threat evoked transient activity in the dorsal amygdala, but that only unpredictable threat produced sustained activity in a forebrain region corresponding to the bed nucleus of the stria terminalis complex. Consistent with animal models hypothesizing a role for the cortex in generating sustained fear, sustained signal increases to unpredictable threat were also found in anterior insula and a frontoparietal cortical network associated with hypervigilance. In addition, unpredictable threat led to transient activity in the ventral amygdala–hippocampal area and pregenual anterior cingulate cortex, as well as transient activation and subsequent deactivation of subgenual anterior cingulate cortex, limbic structures that have been implicated in the regulation of emotional behavior and stress responses. In line with basic findings in rodents, these results provide evidence that phasic and sustained fear in humans may manifest similar signs of distress, but appear to be associated with different patterns of neural activity in the human basal forebrain.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号