首页> 美国卫生研究院文献>other >Characterization of biomodified dentin matrices for potential preventive and reparative therapies
【2h】

Characterization of biomodified dentin matrices for potential preventive and reparative therapies

机译:潜在预防性和重复疗法的生物统治牙本质矩阵的特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative/regenerative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interactions, biodegradation rates, proteoglycans interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent-dentin interaction was observed with GSE which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates remarkably decreased following biomodification of dentin matrices after 24hs collagenase digestion. A significant decreased in the proteoglycans content of GSE treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and control. Tensile strength properties of GD biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD and GSE-treated samples were observed following exposure to collagenase and 8 month water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry; it also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号