首页> 美国卫生研究院文献>other >Local strain and damage mapping in single trabeculae during three-point bending tests
【2h】

Local strain and damage mapping in single trabeculae during three-point bending tests

机译:三点弯曲试验过程中单个小豆蔻局部应变和损伤映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of bone mineral density as a surrogate to diagnose bone fracture risk in individuals is of limited value. However, there is growing evidence that information on trabecular microarchitecture can improve the assessment of fracture risk. One current strategy is to exploit finite element analysis (FEA) applied to 3D image data of several mm-sized trabecular bone structures obtained from non-invasive imaging modalities for the prediction of apparent mechanical properties. However, there is a lack of FE damage models, based on solid experimental facts, which are needed to validate such approaches and to provide criteria marking elastic–plastic deformation transitions as well as microdamage initiation and accumulation. In this communication, we present a strategy that could elegantly lead to future damage models for FEA: direct measurements of local strains involved in microdamage initiation and plastic deformation in single trabeculae. We use digital image correlation to link stress whitening in bone, reported to be correlated to microdamage, to quantitative local strain values. Our results show that the whitening zones, i.e. damage formation, in the presented loading case of a three-point bending test correlate best with areas of elevated tensile strains oriented parallel to the long axis of the samples. The average local strains along this axis were determined to be (1.6 ± 0.9)% at whitening onset and (12 ± 4)% just prior to failure. Overall, our data suggest that damage initiation in trabecular bone is asymmetric in tension and compression, with failure originating and propagating over a large range of tensile strains.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号