首页> 美国卫生研究院文献>other >Unifying the mathematical modeling of in vivo and in vitro microdialysis
【2h】

Unifying the mathematical modeling of in vivo and in vitro microdialysis

机译:统一体内和体外微透析的数学建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

A unifying approach is presented for developing mathematical models of microdialysis that are applicable to both in vitro and in vivo situations. Previous models for cylindrical probes have been limited by accommodating analyte diffusion through the surrounding medium in the radial direction only, i.e., perpendicular to the probe axis, or by incomplete incorporation of diffusion in the axial direction. Both radial and axial diffusion are included in the present work by employing two-dimensional finite element analysis. As in previous models, the nondimensional clearance modulus (Θ) represents the degree to which analyte clearance from the external medium influences diffusion through the medium for systems exhibiting analyte concentration linearity. Incorporating axial diffusion introduces a second dimensionless group, which is the length-to-radius aspect ratio of the membrane. These two parameter groups uniquely determine the external medium permeability, which is time dependent under transient conditions. At steady-state, the dependence of this permeability on the two groups can be approximated by an algebraic formula for much of the parameter ranges. Explicit steady-state expressions derived for the membrane and fluid permeabilities provide good approximations under transient conditions (quasi-steady-state assumption). The predictive ability of the unifying approach is illustrated for microdialysis of sucrose in vivo (brain) and inert media in vitro, under both well-stirred and quiescent conditions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号