首页> 美国卫生研究院文献>other >REM sleep-like episodes of motoneuronal depression and respiratory rate increase are triggered by pontine carbachol microinjections in in situ perfused rat brainstem preparation
【2h】

REM sleep-like episodes of motoneuronal depression and respiratory rate increase are triggered by pontine carbachol microinjections in in situ perfused rat brainstem preparation

机译:REm睡眠般的运动神经元抑郁症和呼吸频率增加的发作是由脑桥卡巴显微注射在原位灌注后的大鼠脑干准备触发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hypoglossal nerve activity (HNA) controls the position and movements of the tongue. In persons with compromised upper airway anatomy, sleep-related hypotonia of the tongue and other pharyngeal muscles causes increased upper airway resistance, or total upper airway obstructions, thus disrupting both sleep and breathing. Hypoglossal nerve activity reaches its nadir, and obstructive episodes are longest and most severe, during rapid eye movement stage of sleep (REMS). Microinjections of a cholinergic agonist, carbachol, into the pons have been used in vivo to investigate the mechanisms of respiratory control during REMS. Here, we recorded inspiratory-modulated phrenic nerve activity and HNA and microinjected carbachol (25–50 nl, 10 mm) into the pons in an in situ perfused working heart–brainstem rat preparation (WHBP), an ex vivo model previously validated for studies of the chemical and reflex control of breathing. Carbachol microinjections were made into 40 sites in 33 juvenile rat preparations and, at 24 sites, they triggered depression of HNA with increased respiratory rate and little change of phrenic nerve activity, a pattern akin to that during natural REMS in vivo. The REMS-like episodes started 151±73 s (SD) following microinjections, lasted 20.3±4.5 min, were elicited most effectively from the dorsal part of the rostral nucleus pontis oralis, and were prevented by perfusion of the preparation with atropine. The WHBP offers a novel model with which to investigate cellular and neurochemical mechanisms of REMS-related upper airway hypotonia in situ without anaesthesia and with full control over the cellular environment.

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号