首页> 美国卫生研究院文献>other >Programming the magnitude and persistence of antibody responses with innate immunity
【2h】

Programming the magnitude and persistence of antibody responses with innate immunity

机译:编程的幅度和抗体反应的持久性与先天免疫

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence suggests that they activate dendritic cells (DCs) via Toll-like receptors (TLRs),. For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates DCs via multiple TLRs to stimulate pro-inflammatory cytokines,. Triggering specific combinations of TLRs in DCs can induce synergistic production of cytokines, which results in enhanced T cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that programs such antibody responses remains a major challenge in vaccinology. Here we demonstrate that immunization of mice with synthetic nanoparticles containing antigens plus Toll-like receptor (TLR) ligands 4 + 7 induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with a single TLR ligand. Consistent with this there was enhanced persistence of germinal centers (GCs), and of plasma cell responses, which persisted in the lymph nodes for >1.5 years. Surprisingly, there was no enhancement of the early short-lived plasma cell response, relative to that observed with single TLR ligands. Molecular profiling of activated B cells, isolated 7 days after immunization, indicated early programming towards B cell memory. Antibody responses were dependent on direct triggering of both TLRs on B cells and dendritic cells (DCs), as well as on T-cell help. Immunization protected completely against lethal avian and swine influenza virus strains in mice, and induced robust immunity against pandemic H1N1 influenza in rhesus macaques.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号