首页> 美国卫生研究院文献>other >A femtosecond transient absorption spectroscopic study on a carbonyl-containing carotenoid analogue 2-(all-trans-retinylidene)-indan-13-dione
【2h】

A femtosecond transient absorption spectroscopic study on a carbonyl-containing carotenoid analogue 2-(all-trans-retinylidene)-indan-13-dione

机译:上有含羰基类胡萝卜素类似物2-(全反式 - 亚视黄基) - 茚满-13-二酮甲飞秒瞬态吸收光谱研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The photophysical properties of a carbonyl-containing carotenoid analogue in an s-cis configuration, relative to the conjugated π system, 2-(all-trans-retinylidene)-indan-1,3-dione (C20Ind), were investigated by femtosecond time-resolved spectroscopy in various solvents. The lifetime of the optically forbidden S1 state of C20Ind becomes long as solvent polarity increases. This trend is completely opposite to the situation of S1-ICT dynamics of carbonyl-containing carotenoids, such as peridinin and fucoxanthin. Excitation energy dependence of the transient absorption measurements shows that the transient absorption spectra in non-polar solvents were originated from two distinct transient species, while those in polar and protic solvents are due to a single transient species. By referring to the results of MNDO-PSDCI (modified neglect of differential overlap with partial single- and double-configuration interaction) calculations, we conclude: (1) In polar and protic solvents, the S1 state is generated following excitation up to the S2 state; (2) In non-polar solvents, however, both the S1 and 1* states are generated; and (3) C20Ind does not generate the S1-ICT state, despite the fact that it has two conjugated carbonyl groups.

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号