首页> 美国卫生研究院文献>other >Rapid high-resolution three-dimensional mapping of T1 and age-dependent variations in the non-human primate brain using magnetization-prepared rapid gradient-echo (MPRAGE) sequence
【2h】

Rapid high-resolution three-dimensional mapping of T1 and age-dependent variations in the non-human primate brain using magnetization-prepared rapid gradient-echo (MPRAGE) sequence

机译:使用磁化制备的快速梯度回声(Mprage)序列快速高分辨率的T1和年龄依赖性变化的T1和年龄依赖性变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of quantitative T1 mapping in neuroscience and neurology has raised strong interest in the development of T1-mapping techniques that can measure T1 in the whole brain, with high accuracy and precision and within short imaging and computation times. Here, we present a new inversion-recovery (IR) based T1-mapping method using a standard 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence. By varying only the inversion time (TI), but keeping other parameters constant, MPRAGE image signals become linear to exp(−TI/T1), allowing for accurate T1 estimation without flip angle correction. We also show that acquiring data at just 3 TIs, with the three different TI values optimized, gives maximum T1 precision per unit time, allowing for new efficient approaches to measure and compute T1. We demonstrate the use of our method at 7 Tesla to obtain 3D T1 maps of the whole brain in common marmosets at 0.60 mm resolution and within 11 minutes. T1 maps from the same individuals were highly reproducible across different days. Across subjects, the peak of cerebral gray matter T1 distribution was 1735±52 ms, and the lower edge of cerebral white matter T1 distribution was 1270±43 ms. We found a significant decrease of T1 in both gray and white matter of the marmoset brain with age over a span of 14 years, in agreement with previous human studies. This application illustrates that MPRAGE-based 3D T1 mapping is rapid, accurate and precise, and can facilitate high-resolution anatomical studies in neuroscience and neurological diseases.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号