首页> 美国卫生研究院文献>other >Associations of hypomelanotic skin disorders with autism: Do they reflect the effects of genetic mutations and epigenetic factors on vitamin-D metabolism in individuals at risk for autism?
【2h】

Associations of hypomelanotic skin disorders with autism: Do they reflect the effects of genetic mutations and epigenetic factors on vitamin-D metabolism in individuals at risk for autism?

机译:患有自闭症脱失的皮肤病协会:他们反映的基因突变和表观遗传因素对维生素d代谢的个体在自闭症风险的影响?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vitamin D is crucial for full functioning in many genes, and vitamin-D deficiency interferes with many processes, including brain development and DNA repair. Several lines of evidence suggest that prenatal and early postnatal vitamin-D deficiency increases risk for autism, probably through multiple effects that include impaired brain development and increased de novo mutations. High rates of autism in several genetically based hypomelanotic skin disorders present a puzzle, because ultraviolet-B (UVB) radiation acting on skin is the major natural source of vitamin D, and lighter skin, which increases UVB penetration, helps protect against vitamin-D deficiency, especially at higher latitudes. Understanding autism’s association with hypomelanosis may elucidate autism’s etiology.We consider two hypotheses that may help explain autism’s association with hypomelanotic disorders. Hypothesis 1) Because genetic and epigenetic variants that produce hypomelanotic conditions may help protect against vitamin-D deficiency, especially at higher latitudes, these variants may tend to decrease mortality – and increase the fertility – of individuals who also carry genetic or epigenetic factors that increase vulnerability to autism. Hypothesis 2) Children with hypomelanotic conditions will be more likely to develop autism, because children’s photosensitivity and parental concerns about sunburn and skin cancer lead them to excessively reduce children’s sun exposure and resultant vitamin-D levels.One approach to testing these hypotheses would involve comparing the genomes, epigenetic markers, skin pigmentation, and serum and brain levels of the active form of vitamin D in autistic individuals, with and without co-morbid hypomelanoses, as well as in their relatives and controls. Because availability of UVB radiation varies widely around the world, epidemiological and genetic studies of the co-morbidity in different regions would provide complementary means of testing the hypotheses.If test results support either hypothesis, they will add important evidence for an etiologic role of vitamin-D deficiency in autism, as well as supporting investigation of whether vitamin-D enhancement may aid treatment and prevention of autism.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号