首页> 美国卫生研究院文献>other >Site–Specific Sonoporation of Human Melanoma Cells at the Cellular Level Using High Lateral–Resolution Ultrasonic Micro–Transducer Arrays
【2h】

Site–Specific Sonoporation of Human Melanoma Cells at the Cellular Level Using High Lateral–Resolution Ultrasonic Micro–Transducer Arrays

机译:使用高横向分辨率超声波微换能器阵列在细胞水平的人体黑素瘤细胞的特异性声孔

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We developed a new instrumental method by which human melanoma cells (LU1205) are sonoporated via radiation pressures exerted by highly–confined ultrasonic waves produced by high lateral–resolution Ultrasonic Micro–Transducer Arrays (UMTAs). The method enables cellular–level site–specific sonoporation within the cell monolayer due to UMTAs and can be applicable in the delivery of drugs and gene products in cellular assays. In this method, cells are seeded on the biochip that employs UMTAs for high spatial resolution and specificity. UMTAs are driven by 30–MHz sinusoidal signals and the resulting radiation pressures induce sonoporation in the targeted cells. The sonoporation degree and the effective lateral resolution of UMTAs are determined by performing fluorescent microscopy and analysis of carboxylic–acid–derivatized CdSe/ZnS quantum dots passively transported into the cells. Models representing the transducer–generated ultrasound radiation pressure, the ultrasound–inflicted cell membrane wound, and the transmembrane transport through the wound are developed to determine the ultrasound–pressure–dependent wound size and enhanced cellular uptake of nanoparticles. Model–based calculations show that the effective wound size and cellular uptake of nanoparticles increase linearly with increasing ultrasound pressure (i.e., at applied radiation pressures of 0.21, 0.29, and 0.40 MPa, the ultrasound–induced initial effective wound radii are 150, 460, and 650 nm, respectively, and the post–sonoporation intracellular quantum–dot concentrations are 7.8, 22.8, and 29.9 nM, respectively) and the threshold pressure required to induce sonoporation in LU1205 cells is ~0.12 MPa.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号