首页> 美国卫生研究院文献>other >Nitrate removal communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds
【2h】

Nitrate removal communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds

机译:硝酸盐去除脱氮机的群落和不同碳基材的不良反应用于脱硝床

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Denitrification beds are containers filled with wood by-products that serve as a carbon and energy source to denitrifiers, which reduce nitrate ( NO3) from point source discharges into non-reactive dinitrogen (N2) gas. This study investigates a range of alternative carbon sources and determines rates, mechanisms and factors controlling NO3 removal, denitrifying bacterial community, and the adverse effects of these substrates. Experimental barrels (0.2 m3) filled with either maize cobs, wheat straw, green waste, sawdust, pine woodchips or eucalyptus woodchips were incubated at 16.8 °C or 27.1 °C (outlet temperature), and received NO3 enriched water (14.38 mg N L−1 and 17.15 mg N L−1). After 2.5 years of incubation measurements were made of NO3N removal rates, in vitro denitrification rates (DR), factors limiting denitrification (carbon and nitrate availability, dissolved oxygen, temperature, pH, and concentrations of NO3, nitrite and ammonia), copy number of nitrite reductase (nirS and nirK ) and nitrous oxide reductase (nosZ ) genes, and greenhouse gas production (dissolved nitrous oxide (N2O) and methane), and carbon (TOC) loss. Microbial denitrification was the main mechanism for NO3N removal. Nitrate–N removal rates ranged from 1.3 (pine woodchips) to 6.2 g N m−3 d−1 (maize cobs), and were predominantly limited by C availability and temperature (Q10 = 1.2) when NO3N outlet concentrations remained above 1 mg L−1. The NO3N removal rate did not depend directly on substrate type, but on the quantity of microbially available carbon, which differed between carbon sources. The abundance of denitrifying genes (nirS, nirK and nosZ ) was similar in replicate barrels under cold incubation, but varied substantially under warm incubation, and between substrates. Warm incubation enhanced growth of nirS containing bacteria and bacteria that lacked the nosZ gene, potentially explaining the greater N2O emission in warmer environments. Maize cob substrate had the highest NO3N removal rate, but adverse effects include TOC release, dissolved N2O release and substantial carbon consumption by non-denitrifiers. Wood-chips removed less than half of NO3 removed by maize cobs, but provided ideal conditions for denitrifying bacteria, and adverse effects were not observed. Therefore we recommend the combination of maize cobs and woodchips to enhance NO3 removal while minimizing adverse effects in denitrification beds.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号