首页> 美国卫生研究院文献>other >Morphology Enabled Dipole Inversion for Quantitative Susceptibility Mapping Using Structural Consistency Between the Magnitude Image and the Susceptibility Map
【2h】

Morphology Enabled Dipole Inversion for Quantitative Susceptibility Mapping Using Structural Consistency Between the Magnitude Image and the Susceptibility Map

机译:形态学使偶极反转用于定量敏感性映射使用幅度图像和易感性图之间的结构一致性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The magnetic susceptibility of tissue can be determined in gradient echo MRI by deconvolving the local magnetic field with the magnetic field generated by a unit dipole. This Quantitative Susceptibility Mapping (QSM) problem is unfortunately ill-posed. By transforming the problem to the Fourier domain, the susceptibility appears to be undersampled only at points where the dipole kernel is zero, suggesting that a modest amount of additional information may be sufficient for uniquely resolving susceptibility. A Morphology Enabled Dipole Inversion (MEDI) approach is developed that exploits the structural consistency between the susceptibility map and the magnitude image reconstructed from the same gradient echo MRI. Specifically, voxels that are part of edges in the susceptibility map but not in the edges of the magnitude image are considered to be sparse. In this approach an L1 norm minimization is used to express this sparsity property. Numerical simulations and phantom experiments are performed to demonstrate the superiority of this L1 minimization approach over the previous L2 minimization method. Preliminary brain imaging results in healthy subjects and in patients with intracerebral hemorrhages illustrate that QSM is feasible in practice.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号