首页> 美国卫生研究院文献>other >Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor
【2h】

Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

机译:动作电位的细胞内记录由一个细胞外的纳米级场效应晶体管

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to make electrical measurements inside cells has led to many important advances in electrophysiology-. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution,. Ideally the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior,, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints,-. Field-effect transistors (FETs) can also record electric potentials inside cells, and since their performance does not depend on impedance,, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here we report a new approach where a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. After penetrating the cell membrane, the SiO2 nanotube brings the cell cytosol into contact with the FET and enables the recording of intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale which is well below that accessible with other methods,,. Studies of cardiomyocyte cells demonstrate that when brought close, the nanotubes of phospholipid-modified BIT-FETs spontaneously penetrate the cell membrane to yield stable, full-amplitude intracellular action potential recording, showing that a stable tight seal forms between the nanotube and cell membrane. We also show that multiple BIT-FETs can record multiplexed intracellular signals from both single cells and networks of cells.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号