首页> 美国卫生研究院文献>other >Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis
【2h】

Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis

机译:集成到微流体为血流介导的内皮机械传导分析的弹性体微柱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanotransduction is known as the cellular mechanism converting insoluble biophysical signals in the local cellular microenvironment (e.g. matrix rigidity, external mechanical forces, and fluid shear) into intracellular signalling to regulate cellular behaviours. While microfluidic technologies support a precise and independent control of soluble factors in the cellular microenvironment (e.g. growth factors, nutrients, and dissolved gases), the regulation of insoluble biophysical signals in microfluidics, especially matrix rigidity and adhesive pattern, has not yet been achieved. Here we reported an integrated soft lithography-compatible microfluidic methodology that could enable independent controls and modulations of fluid shear, substrate rigidity, and adhesive pattern in a microfluidic environment, by integrating micromolded elastomeric micropost arrays and microcontact printing with microfluidics. The geometry of the elastomeric micropost array could be regulated to mediate substrate rigidity and adhesive pattern, and further the elastomeric micropost could be utilized as force sensors to map live-cell subcellular contractile forces. To illustrate the general application of our methodology, we investigated the flow-mediated endothelial mechanotransduction process and examined specifically the involvement of subcellular contractile forces in the morphological realignment process of endothelial cells under a sustained directional fluid shear. Our results showed that the cytoskeletal contractile forces of endothelial cells were spatiotemporally regulated and coordinated to facilitate their morphology elongation process along the direction of flow. Together, our study provided an integrated microfluidic strategy to modulate the in vitro cellular microenvironment with both defined soluble and insoluble signals, and we demonstrated its application to investigate quantitatively the involvement of cytoskeletal contractile forces in the flow-mediated mechanotransduction process of endothelial cells.
机译:机械手术被称为细胞机制,将不溶性生物物理信号转化在局部细胞微环境(例如基质刚度,外部机械力和流体剪切)中转化为细胞内信号以调节蜂窝行为。虽然微流体技术支持细胞微环境(例如生长因子,营养物质和溶解气体)的精确和独立地控制可溶性因子,但尚未实现微流体中的不溶性生物物理信号,特别是基质刚性和粘合图案。在这里,我们报道了一种集成的软光刻兼容的微流体方法,可以通过将微胶体弹性体微滤网和微观印刷与微流体分解来实现微流体环境中的流体剪切,衬底刚度和粘合剂图案的独立控制和调制。弹性体微孔阵列的几何形状可以调节以介导衬底刚度和粘合剂图案,并且进一步的弹性微孔可以用作映射活细胞亚细胞收缩力的力传感器。为了说明我们的方法的一般应用,我们研究了流动介导的内皮机械调节方法,并研究了亚细胞收缩力在持续定向流体剪切下内皮细胞的形态调节过程中的累积。我们的研究结果表明,内皮细胞的细胞骨架收缩力偶然调节并配位,以促进其沿流动方向的形态伸长过程。我们的研究共同提供了一种集成的微流体策略来调节与定义的可溶性和不溶性信号的体外细胞微环境,并且我们证明了其应用,以定量地研究细胞骨骼收缩力在内皮细胞的流动介导的机电调用过程中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号