首页> 美国卫生研究院文献>other >Measurement of elemental concentration of aerosols using spark emission spectroscopy
【2h】

Measurement of elemental concentration of aerosols using spark emission spectroscopy

机译:使用火花发射光谱气溶胶元素浓度的测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~1016 cm−3), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation.
机译:同轴微电极系统已用于使用火花发射光谱法在近乎实时收集和分析气溶胶颗粒的元素组成。该技术涉及将带电气溶胶颗粒的静电沉积聚焦到微电极的平坦尖端上,然后引入火花排出。在电极上产生脉冲火花放电,输入能量范围为50至300mJ的每个脉冲,导致形成受控脉冲等离子体。阴极尖端上的颗粒物质被火花等离子体烧蚀和雾化,导致原子发射,随后使用宽带光谱仪进行元素识别和量化记录。即使在使用相同电极系统的几千次火花放电之后,发现等离子体特性也非常一致,可再现。通过测量激发温度(〜7000至10 000K),电子密度(〜10 16 cm -3 ),以及光谱响应的演化,表征出火花等离子体。时间的函数。使用含有Pb,Si,Na和Cr的颗粒校准该系统。获得11pg至1.75ng的绝对质量检测限制。光谱测量的可重复性从2到15%变化。该技术提供了与激光诱导的击穿光谱相似的基于显微基的技术的关键优势,如:(i)它不需要任何激光束光学器件,并且消除了对来自直流电源的脉冲对准的任何需求,(II)脉冲能量与来自相同物理尺寸的激光源相比,SIBS系统可以高得多,并且(iii)非常有利于紧凑,现场便携式仪器。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(27),7
  • 年度 -1
  • 页码 1101–1109
  • 总页数 26
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

  • 入库时间 2022-08-21 11:24:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号