首页> 美国卫生研究院文献>other >Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems
【2h】

Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems

机译:计算视验:一种用于活性系统的光电化学的新型连续体框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.
机译:电气刺激目前是心律节奏疾病的黄金标准治疗。然而,电气起搏与技术限制和不可避免的潜在并发症有关。最近的发展现在能够使用称为Optimetics的新技术刺激哺乳动物细胞。基因工程细胞的光学刺激已经显着改变了我们对电激发组织的理解,铺平了通过光刺激控制心律紊乱的方式。反过来控制这些疾病,恢复协调的力量,以避免突然的心脏死亡。在这里,我们向生活系统的光电化学报告了一种新的连续体框架,使我们能够破译该技术调节心脏电气和机械功能的机制。使用模块化多尺度方法,我们通过额外的光电流将非选择性阳离子通道,沟道流柱,沟道流态-2引入常规心肌细胞模型中。在光学刺激后,该通道打开并允许钠离子进入细胞,诱导电激活。与常规心肌细胞的并排比较,我们表明光致刺激直接增加钠浓度,间接地降低细胞中的钾浓度,而细胞的所有其他特性几乎保持不变。我们使用非线性抛物线二阶偏微分方程将我们的模型单元集成为可激发组织的连续组型,我们使用有限元和空间在时间上分离出来。为了说明该计算模型的潜力,我们实际上将光敏细胞注射到人体的不同位置,并在光刺激时探讨其激活序列。我们的计算视验工具盒允许我们几乎探测工艺参数的景观,并识别最佳的光致刺激序列,目标是使用光线和最终恢复机械功能的人类心灵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号