首页> 美国卫生研究院文献>other >Movement duration Fitts’s law and an infinite-horizon optimal feedback control model for biological motor systems
【2h】

Movement duration Fitts’s law and an infinite-horizon optimal feedback control model for biological motor systems

机译:运动持续时间FITTS法和生物电机系统的无限范围最佳反馈控制模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optimization models explain many aspects of biological goal-directed movements. However, most such models use a finite-horizon formulation which requires a pre-fixed movement duration to define a cost function and solve the optimization problem. To predict movement duration, these models have to be run multiple times with different pre-fixed durations until an appropriate duration is found via trial and error. The constrained minimum time model directly predicts movement duration; however, it does not consider sensory feedback and is thus only applicable to open-loop movements. To address these problems, we analyzed and simulated an infinite-horizon optimal feedback control model, with linear plants, that contains both control dependent and independent noise and optimizes steady-state accuracy and energetic costs per unit time. The model applies the steady-state estimator and controller continuously to guide an effector to, and keep it at, target position. As such, it integrates movement control and posture maintenance, without artificially dividing them with a precise, pre-fixed time boundary. Movement pace is determined by the model parameters and the duration is an emergent property with trial-to-trial variability. By considering the mean duration, we derived both the log and power forms of Fitts’s law as different approximations of the model. Moreover, the model reproduces typically observed velocity profiles and occasional transient overshoots. For unbiased sensory feedback, the effector reaches the target without bias, in contrast to finite-horizon models that systematically undershoot target when energetic cost is considered. Finally, the model does not involve backward and forward sweeps in time, its stability is easily checked, and the same solution applies to movements of different initial conditions and distances. We argue that biological systems could use steady-state solutions as default control mechanisms and might seek additional optimization of transient costs when justified or demanded by task or context.
机译:优化模型解释了生物目标导向运动的许多方面。但是,大多数此类模型使用有限水平公式,该公式需要预先确定的移动持续时间来定义成本函数并解决优化问题。为了预测运动持续时间,这些模型必须以不同的预定持续时间运行多次,直到通过反复试验找到合适的持续时间。受约束的最小时间模型直接预测运动持续时间;但是,它不考虑感觉反馈,因此仅适用于开环运动。为了解决这些问题,我们分析和模拟了带有线性工厂的无限水平最优反馈控制模型,该模型包含与控制有关的噪声和与控制无关的噪声,并优化了稳态精度和单位时间的能量成本。该模型连续应用稳态估计器和控制器,以将效应器引导至目标位置并保持在目标位置。因此,它集成了运动控制和姿势保持功能,而无需人为地将它们与精确的预先确定的时间范围分开。运动速度由模型参数确定,持续时间是试验与试验之间的差异性。通过考虑平均持续时间,我们得出了菲茨定律的对数和幂形式,作为模型的不同近似值。此外,该模型还再现了通常观察到的速度曲线和偶发的瞬时超调。对于无偏见的感官反馈,效应器可以毫无偏差地到达目标,这与有限水平模型相反,后者在考虑能量消耗时会系统地低于目标。最后,该模型不涉及时间上的向前和向后扫描,易于检查其稳定性,并且相同的解决方案适用于不同初始条件和距离的运动。我们认为,生物系统可以使用稳态解决方案作为默认控制机制,并且在任务或环境合理或有要求时可能会寻求对瞬态成本的其他优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号