首页> 美国卫生研究院文献>other >Traveling-wave Ion Mobility-Mass Spectrometry Reveals Additional Mechanistic Details in the Stabilization of Protein Complex Ions through Tuned Salt Additives
【2h】

Traveling-wave Ion Mobility-Mass Spectrometry Reveals Additional Mechanistic Details in the Stabilization of Protein Complex Ions through Tuned Salt Additives

机译:旅行波离子迁移率质谱仪通过调谐盐添加剂揭示蛋白质复合离子稳定的额外机械细节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ion mobility–mass spectrometry is often applied to the structural elucidation of multiprotein assemblies in cases where X-ray crystallography or NMR experiments have proved challenging. Such applications are growing steadily as we continue to probe regions of the proteome that are less-accessible to such high-resolution structural biology tools. Since ion mobility measures protein structure in the absence of bulk solvent, strategies designed to more-broadly stabilize native-like protein structures in the gas-phase would greatly enable the application of such measurements to challenging structural targets. Recently, we have begun investigating the ability of salt-based solution additives that remain bound to protein ions in the gas-phase to stabilize native-like protein structures. These experiments, which utilize collision induced unfolding and collision induced dissociation in a tandem mass spectrometry mode to measure protein stability, seek to develop a rank-order similar to the Hofmeister series that categorizes the general ability of different anions and cations to stabilize gas-phase protein structure. Here, we study magnesium chloride as a potential stabilizing additive for protein structures in vacuo, and find that the addition of this salt to solutions prior to nano-electrospray ionization dramatically enhances multiprotein complex structural stability in the gas-phase. Based on these experiments, we also refine the physical mechanism of cation-based protein complex ion stabilization by tracking the unfolding transitions experienced by cation-bound complexes. Upon comparison with unbound proteins, we find strong evidence that stabilizing cations act to tether protein complex structure. We conclude by putting the results reported here in context, and by projecting the future applications of this method.
机译:在X射线晶体学或NMR实验证明具有挑战性的情况下,离子淌度质谱通常用于多蛋白组装的结构解析。随着我们继续探查蛋白质组的此类高分辨率结构生物学工具难以获得的区域,此类应用正在稳步增长。由于离子迁移率是在没有大量溶剂的情况下测量蛋白质结构的,因此旨在更广泛地稳定气相中的天然蛋白结构的策略将极大地使此类测量应用于具有挑战性的结构目标。最近,我们已经开始研究在气相中仍与蛋白质离子结合的盐基溶液添加剂稳定天然蛋白结构的能力。这些实验以串联质谱模式利用碰撞诱导的展开和碰撞诱导的解离来测量蛋白质的稳定性,试图建立类似于Hofmeister系列的等级顺序,该等级对不同阴离子和阳离子稳定气相的一般能力进行了分类。蛋白质结构。在这里,我们研究了氯化镁在真空中作为蛋白质结构潜在的稳定添加剂,并发现在纳米电喷雾电离之前,将这种盐添加到溶液中可显着增强气相中多蛋白质复合物的结构稳定性。在这些实验的基础上,我们还通过跟踪与阳离子结合的复合物经历的展开转变来完善基于阳离子的蛋白质复合物离子稳定化的物理机制。通过与未结合的蛋白质进行比较,我们发现有力的证据表明稳定的阳离子对系链蛋白质复合物结构起作用。最后,我们将在此报告的结果放到上下文中,并预测该方法的未来应用。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号