首页> 美国卫生研究院文献>other >Block and Boost DNA Transfer: Opposite Roles of OmpA in Natural and Artificial Transformation of Escherichia coli
【2h】

Block and Boost DNA Transfer: Opposite Roles of OmpA in Natural and Artificial Transformation of Escherichia coli

机译:阻止和促进DNA转移:OmpA在大肠杆菌自然和人工转化中的相反作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Our previous work established that DNA is naturally transferable on agar plates through a new transformation system which is regulated by the stationary phase master regulator RpoS in Escherichia coli. In this transformation system, neither additional Ca2+ nor heat shock is required. Instead, transformation is stimulated by agar. The membrane protein OmpA, a gated pore permeable to ions and larger solutes, serves as a receptor for DNA transfer during bacteriophage infection and conjugation. However, it remains unknown how DNA transfers across membranes and whether OmpA is involved in transformation of E. coli. Here, we explored potential roles of OmpA in natural and chemical transformation of E. coli. We observed that ompA inactivation significantly improved natural transformation on agar plates, indicating that OmpA blocks DNA transfer. Transformation promotion by ompA inactivation also occurred on soft plates, indicating that OmpA blocks DNA transfer independent of agar. By contrast, compared with the wild-type strain, chemical transformation of the ompA mutant was lower, indicating that OmpA has a role in DNA transfer. Inactivation of ompA also reduced chemical transformation in solution containing less Ca2+ or with a shortened time for heat shock, suggesting that the promotion effect of OmpA on DNA transfer does not solely rely on Ca2+ or heat shock. We conclude that OmpA plays opposite roles in natural and chemical transformation: it blocks DNA uptake on agar plates but promotes DNA transfer in the liquid Ca2+ solution. Considering that no single factor was identified to reverse the function of OmpA, we propose that multiple factors may cooperate in the functional reversal of OmpA during natural and artificial transformation of E. coli. Finally, we observed that ompA transcription was not affected by the expression of RpoS, excluding the possibility that RpoS regulates DNA transfer by suppressing ompA transcription.
机译:我们以前的工作确定了DNA可通过新的转化系统在琼脂平板上自然转移,该新转化系统由大肠杆菌中固定相主调节剂RpoS调节。在该转化系统中,不需要额外的Ca 2 + 或热冲击。相反,琼脂刺激转化。膜蛋白OmpA是可透过离子和较大溶质的门控孔,可作为噬菌体感染和结合过程中DNA转移的受体。然而,仍然未知DNA如何跨膜转移以及OmpA是否参与大肠杆菌的转化。在这里,我们探讨了OmpA在大肠杆菌自然和化学转化中的潜在作用。我们观察到,ompA失活显着改善了琼脂平板上的自然转化,表明OmpA阻止了DNA转移。通过ompA失活促进转化也发生在软板上,这表明OmpA可以独立于琼脂阻止DNA转移。相比之下,与野生型菌株相比,ompA突变体的化学转化率较低,这表明OmpA在DNA转移中具有作用。 ompA的失活还减少了Ca 2 + 较少或热休克时间缩短的溶液中的化学转化,这表明OmpA对DNA转移的促进作用并不仅仅依赖于Ca 2 + 或热冲击。我们得出结论,OmpA在自然和化学转化中起相反的作用:它阻止琼脂平板上的DNA摄取,但促进液体Ca 2 + 溶液中的DNA转移。考虑到没有单一因素被确定可以逆转OmpA的功能,我们建议在大肠杆菌自然和人工转化过程中,多个因素可以协同作用于OmpA的功能逆转。最后,我们观察到ompA转录不受RpoS表达的影响,排除了RpoS通过抑制ompA转录调节DNA转移的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号