首页> 美国卫生研究院文献>other >Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-Cultures to Improve Lignocellulosic Biofuel Production
【2h】

Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-Cultures to Improve Lignocellulosic Biofuel Production

机译:热厌氧菌属物种的基因组评估。设计师共同文化的建设以改善木质纤维素生物燃料的生产

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript.
机译:由木质纤维素生物质微生物生产乙醇是一个多组分过程,涉及生物质水解,碳水化合物运输和利用,最后涉及乙醇的生产。由于其固有的从半纤维素成分糖中产生较高乙醇产率的能力,对热厌氧杆菌属的菌株进行了数十年的研究。然而,它们不能水解纤维素,限制了它们在木质纤维素生物燃料生产中的用途。因此,共培养嗜热厌氧杆菌属。用纤维素分解生物是一种改善木质纤维素转化效率和生物燃料产量的可行方法。为了评估天然木质纤维素乙醇相对于竞争性发酵终产物的生产能力,对11种测序的嗜热厌氧菌菌株进行了比较基因组分析,其中包括从头基因组,即嗜热厌氧菌WC1。分析专门针对每种菌株的基因组潜力,以解决通过整合生物加工方法提及的乙醇生产的所有方面。全基因组功能注释分析确定了该属内的三个不同进化枝。 Clade 1菌株的基因组编码最少的细胞外碳水化合物活性酶,并且在木质纤维素相关的碳水化合物利用途径方面也表现出最少的多样性。但是,据报道,与其他嗜热厌氧菌菌株相比,这些相同菌株能够将更高比例的总碳通量导向乙醇,而不是非生物燃料终产物。就木质纤维素的水解和利用而言,进化枝2中的菌株表现出最大的多样性,但与进化枝1菌株相比,产生的非乙醇终产物比例更高。进化枝3中的菌株(其中包括T.thermohydrohydroulfuricus WC1)显示出木质纤维素水解和利用的中程潜力,但就细胞的能量学而言,也与进化枝1和进化枝2菌株表现出很大的差异。在整个手稿中,都检查了有关菌株选择和通过整合生物加工共培养方法适合工业乙醇生产的潜在影响。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号