首页> 美国卫生研究院文献>Frontiers in Plant Science >Leaf Hydraulic Conductance for a Tank Bromeliad: Axial and Radial Pathways for Moving and Conserving Water
【2h】

Leaf Hydraulic Conductance for a Tank Bromeliad: Axial and Radial Pathways for Moving and Conserving Water

机译:罐凤梨科的叶片水力传导:用于移动和保存水的轴向和径向路径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Epiphytic plants in the Bromeliaceae known as tank bromeliads essentially lack stems and absorptive roots and instead take up water from reservoirs formed by their overlapping leaf bases. For such plants, leaf hydraulic conductance is plant hydraulic conductance. Their simple strap-shaped leaves and parallel venation make them suitable for modeling leaf hydraulic conductance based on vasculature and other anatomical and morphological traits. Plants of the tank bromeliad Guzmania lingulata were investigated in a lowland tropical forest in Costa Rica and a shaded glasshouse in Los Angeles, CA, USA. Stomatal conductance to water vapor and leaf anatomical variables related to hydraulic conductance were measured for both groups. Tracheid diameters and numbers of vascular bundles (veins) were used with the Hagen–Poiseuille equation to calculate axial hydraulic conductance. Measurements of leaf hydraulic conductance using the evaporative flux method were also made for glasshouse plants. Values for axial conductance and leaf hydraulic conductance were used in a model based on leaky cable theory to estimate the conductance of the radial pathway from the vein to the leaf surface and to assess the relative contributions of both axial and radial pathways. In keeping with low stomatal conductance, low stomatal density, low vein density, and narrow tracheid diameters, leaf hydraulic conductance for G. lingulata was quite low in comparison with most other angiosperms. Using the predicted axial conductance in the leaky cable model, the radial resistance across the leaf mesophyll was predicted to predominate; lower, more realistic values of axial conductance resulted in predicted radial resistances that were closer to axial resistance in their impact on total leaf resistance. Tracer dyes suggested that water uptake through the tank region of the leaf was not limiting. Both dye movement and the leaky cable model indicated that the leaf blade of G. lingulata was structurally and hydraulically well-suited to conserve water.
机译:凤梨科的附生植物被称为罐状凤梨科植物,基本上缺少茎和吸收性根,取而代之的是从重叠的叶基形成的水库中吸收水分。对于此类植物,叶片水力传导率是植物水力传导率。它们简单的带状叶片和平行脉络使其适合根据脉管系统以及其他解剖和形态特征对叶片的水力传导进行建模。在哥斯达黎加的低地热带森林和美国加利福尼亚州洛杉矶的阴凉玻璃温室中研究了凤梨属植物Guzmania lingulata的植物。两组均测量了对水蒸气的气孔导度以及与水力导度相关的叶片解剖变量。气管直径和血管束(静脉)的数量与Hagen–Poiseuille方程一起使用,以计算轴向水力传导率。还对温室植物使用了蒸发通量法来测量叶片的水力传导率。在基于泄漏电缆理论的模型中使用轴向电导和叶片水力导流的值来估计从静脉到叶片表面的径向通道的电导,并评估轴向和径向通道的相对贡献。为了保持低气孔导度,低气孔密度,低静脉密度和狭窄的气管直径,与其他大多数被子植物相比,灵芝G. lingulata的叶片水导率非常低。使用在泄漏电缆模型中预测的轴向电导,可以预测叶肉叶的径向阻力占主导。较低的,更现实的轴向电导值会导致预测的径向阻力在影响叶片总阻力时更接近于轴向阻力。示踪染料表明,通过叶的罐区吸收的水没有限制。染料移动和泄漏电缆模型都表明灵芝G. lingulata的叶片在结构和水力上都非常适合节水。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号