首页> 美国卫生研究院文献>other >Identification of Sparse Neural Functional Connectivity using Penalized Likelihood Estimation and Basis Functions
【2h】

Identification of Sparse Neural Functional Connectivity using Penalized Likelihood Estimation and Basis Functions

机译:基于惩罚似然估计和基函数的稀疏神经功能连通性识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One key problem in computational neuroscience and neural engineering is the identification and modeling of functional connectivity in the brain using spike train data. To reduce model complexity, alleviate overfitting, and thus facilitate model interpretation, sparse representation and estimation of functional connectivity is needed. Sparsities include global sparsity, which captures the sparse connectivities between neurons, and local sparsity, which reflects the active temporal ranges of the input-output dynamical interactions. In this paper, we formulate a generalized functional additive model (GFAM) and develop the associated penalized likelihood estimation methods for such a modeling problem. A GFAM consists of a set of basis functions convolving the input signals, and a link function generating the firing probability of the output neuron from the summation of the convolutions weighted by the sought model coefficients. Model sparsities are achieved by using various penalized likelihood estimations and basis functions. Specifically, we introduce two variations of the GFAM using a global basis (e.g., Laguerre basis) and group LASSO estimation, and a local basis (e.g., B-spline basis) and group bridge estimation, respectively. We further develop an optimization method based on quadratic approximation of the likelihood function for the estimation of these models. Simulation and experimental results show that both group-LASSO-Laguerre and group-bridge-B-spline can capture faithfully the global sparsities, while the latter can replicate accurately and simultaneously both global and local sparsities. The sparse models outperform the full models estimated with the standard maximum likelihood method in out-of-sample predictions.
机译:计算神经科学和神经工程学中的一个关键问题是使用峰值训练数据识别和建模大脑中的功能连接。为了减少模型的复杂性,减轻过度拟合,从而促进模型的解释,需要稀疏表示和功能连接的估计。稀疏性包括全局稀疏性和局部稀疏性,全局稀疏性捕获了神经元之间的稀疏连接性,而局部稀疏性反映了输入输出动态交互的活动时间范围。在本文中,我们制定了广义功能加性模型(GFAM),并针对此类建模问题开发了相关的惩罚似然估计方法。 GFAM包括一组对输入信号进行卷积的基函数,以及一个链接函数,该链接函数根据由所寻找模型系​​数加权的卷积之和生成输出神经元的触发概率。模型稀疏度是通过使用各种惩罚性似然估计和基函数来实现的。具体而言,我们分别使用全局基础(例如Laguerre基础)和组LASSO估计以及局部基础(例如B样条基础)和组桥估计来介绍GFAM的两种变体。我们进一步开发了一种基于似然函数二次逼近的优化方法,用于估算这些模型。仿真和实验结果表明,LASSO-Laguerre组和B桥-B组样条曲线都可以忠实地捕获全局稀疏度,而后者可以准确并同时复制全局稀疏度和局部稀疏度。在样本外预测中,稀疏模型的性能优于使用标准最大似然法估计的完整模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号