首页> 美国卫生研究院文献>other >Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro
【2h】

Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro

机译:氧化铁纳米粒子的聚集影响剂量率并调节体外氧化应激介导的剂量反应曲线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm–1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their physical and chemical characteristics.
机译:工程纳米颗粒(ENPs)的自发团聚是细胞培养基中的常见问题,可能会混淆体外纳米毒性研究的解释。作者在常规培养基中创建了稳定的氧化铁纳米颗粒(IONP)附聚物,其流体力学尺寸(276 nm–1.5μm)不同,但由具有相似表面电位和蛋白质涂层的相同初级颗粒组成。使用C10肺上皮细胞的研究表明,团聚的剂量率效应可能很大,在某些情况下,细胞剂量的差异超过一个数量级。磁性颗粒检测定量显示,与大团聚物相比,羧化IONP的小团聚物诱导更大的细胞毒性和氧化还原调节的基因表达,而胺修饰的IONP团聚物则无法诱导细胞毒性或氧化还原-尽管递送了相似的细胞剂量,但仍能调节基因表达。剂量学模型和实验测量结果表明,就交付的表面积而言,各种大小的羧化IONP团聚体具有相似的内在效力,可用于产生ROS,诱导与压力有关的基因以及最终产生细胞毒性。结果表明,团聚体表面上的反应性部分比掩埋在团聚体核心内的分子更有效地催化细胞ROS的产生。由于ENP体外递送至细胞的动力学,大小和密度依赖性,因此无法通过单独的静态暴露浓度(μg/ ml)来分辨团聚的生物学后果,从而突出了综合物理表征和定量的核心重要性剂量学用于体外研究。实验与计算相结合的方法为评估纳米颗粒的生物相容性与其理化特性之间的关系提供了定量框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号