首页> 美国卫生研究院文献>other >‘Living’ PEGylation on gold nanoparticles to optimize cancer cell uptake by controlling targeting ligand and charge densities
【2h】

‘Living’ PEGylation on gold nanoparticles to optimize cancer cell uptake by controlling targeting ligand and charge densities

机译:通过控制靶向配体和电荷密度在金纳米颗粒上进行活 PEG化以优化癌细胞摄取

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report and demonstrate biomedical applications of a new technique – ‘living’ PEGylation – that allows control of the density and composition of heterobifunctional PEG (HS-PEG-R) on gold nanoparticles (AuNPs). We first establish ‘living’ PEGylation by incubating HS-PEG5000-COOH with AuNPs (~20 nm) at increasing molar ratios from zero to 2000. This causes the hydrodynamic layer thickness to differentially increase up to 26 nm. The controlled, gradual increase in PEG-COOH density is revealed after centrifugation, based on the ability to re-suspend the pellet and increase the AuNP absorption. Using a fluorescamine-based assay we quantify differential HS-PEG5000-NH2 binding to AuNPs, revealing it is highly efficient until AuNP saturation. Furthermore, the zeta potential incrementally changes from −44.9 to +52.2 mV and becomes constant upon saturation. Using ‘living’ PEGylation we prepare AuNPs with different ratios of HS-PEG-RGD and incubate them with U-87 MG and non-target cells, demonstrating that targeting ligand density is critical to maximizing the targeting efficiency of AuNPs to cancer cells. We also sequentially control the HS-PEG-R density to develop multifunctional nanoparticles, conjugating positively-charged HS-PEG-NH2 at increasing ratios to AuNPs containing negatively-charged HS-PEG-COOH to reduce uptake by macrophage cells. This ability to minimize non-specific binding/uptake by healthy cells could further improve targeted nanoparticle efficacy.
机译:我们报告并演示了一种新技术的生物医学应用-“活体” PEG化-可以控制金纳米颗粒(AuNPs)上异双功能PEG(HS-PEG-R)的密度和组成。我们首先通过将HS-PEG5000-COOH与AuNPs(〜20 nm)以从零到2000的摩尔比增加的方式进行孵育来建立“活性” PEG化。这会导致流体动力学层厚度差异性地增加到26 nm。基于重新悬浮沉淀物和增加AuNP吸收的能力,离心后显示出PEG-COOH密度的受控逐渐增加。使用基于荧光胺的分析方法,我们量化了与HS-PEG5000-NH2结合AuNPs的差异,显示出直到AuNP饱和之前它都是高效的。此外,ζ电势从−44.9到+52.2 mV递增变化,并在饱和时变为恒定。使用“活” PEG化,我们可以制备具有不同比率的HS-PEG-RGD的AuNP,并将它们与U-87 MG和非靶细胞孵育,这表明靶向配体密度对于最大化AuNP对癌细胞的靶向效率至关重要。我们还顺序控制HS-PEG-R密度以开发多功能纳米粒子,将正电荷HS-PEG-NH2与包含负电荷HS-PEG-COOH的AuNPs的比率增加,以减少巨噬细胞的摄取。最小化健康细胞非特异性结合/摄取的能力可以进一步提高靶向纳米颗粒的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号