首页> 美国卫生研究院文献>other >Nanoparticle-nanoparticle interactions in biological media by Atomic Force Microscopy
【2h】

Nanoparticle-nanoparticle interactions in biological media by Atomic Force Microscopy

机译:原子力显微镜在生物介质中的纳米粒子-纳米粒子相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Particle-particle interactions in physiological media are important determinants for nanoparticle fate and transport. Herein, such interactions are assessed by a novel Atomic Force Microscopy (AFM) based platform. Industry-relevant CeO2, Fe2O3, and SiO2 nanoparticles of various diameters were made by the flame spray pyrolysis (FSP) based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES). The nanoparticles were fully characterized structurally and morphologically and their properties in water and biological media were also assessed. The nanoparticles were attached on AFM tips and deposited on Si substrates to measure particle–particle interactions. The corresponding force was measured in air, water and biological media that are widely used in toxicological studies. The presented AFM based approach can be used to assess the agglomeration potential of nanoparticles in physiological fluids. The agglomeration potential of CeO2 nanoparticles in water and RPMI 1640 (Roswell Park Memorial Institute formulation 1640) was inversely proportional to their primary particle (PP) diameter, but for Fe2O3 nanoparticles, that potential is independent of PP diameter in these media. Moreover, in RPMI+10% Fetal Bovine Serum (FBS) the corona thickness and dispersibility of the CeO2 is independent of PP diameter while for Fe2O3, the corona thickness and dispersibility were inversely proportional to PP diameter. The present method can be combined with (dynamic light scattering (DLS), proteomics, and computer simulations to understand the nano-bio interactions, with emphasis on the agglomeration potential of nanoparticles and their transport in physiological media.
机译:生理介质中的颗粒间相互作用是决定纳米颗粒命运和运输的重要决定因素。在本文中,通过新颖的基于原子力显微镜(AFM)的平台评估了此类相互作用。通过基于火焰喷雾热解(FSP)的哈佛大学通用工程纳米材料产生系统(Harvard VENGES),制备了与工业相关的各种直径的CeO2,Fe2O3和SiO2纳米颗粒。纳米粒子在结构和形态上都得到了充分表征,还评估了它们在水和生物介质中的性能。纳米颗粒附着在AFM尖端上,并沉积在Si衬底上以测量颗粒间的相互作用。在空气,水和生物毒理学研究中广泛使用的介质中测量了相应的力。提出的基于AFM的方法可用于评估纳米粒子在生理液中的聚集潜力。 CeO2纳米粒子在水中和RPMI 1640(罗斯威尔公园纪念学院的配方1640)中的团聚潜力与它们的初级粒子(PP)直径成反比,但对于Fe2O3纳米粒子,该潜力与这些介质中的PP直径无关。此外,在RPMI + 10%胎牛血清(FBS)中,CeO2的电晕厚度和分散性与PP直径无关,而对于Fe2O3,CeO2的电晕厚度和分散性与PP直径成反比。本方法可以与(动态光散射(DLS),蛋白质组学和计算机模拟相结合,以了解纳米生物相互作用,重点是纳米颗粒的团聚潜力及其在生理介质中的运输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号