首页> 美国卫生研究院文献>other >From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.
【2h】

From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

机译:从斑马鱼心脏慢跑基因到小鼠和人类直系同源物:使用基因本体论研究哺乳动物心脏的发育。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.  We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.  This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
机译:对于发育中的脊椎动物胚胎中的大多数器官而言,左右不对称性由纤毛区控制。鼠标和人类的左右组织者节点,斑马鱼中的Kuppfer囊泡。在斑马鱼中,来自Kuppfer囊泡的侧向性信号决定了发育中的心脏的不对称性,“心脏慢跑”的方向和“心脏循环”的方向。 “慢跑”是指对称的斑马鱼心管相对于背中线向左移动“慢跑”的过程。尽管在循环之前确实发生了小鼠尾心心脏向左移位的现象,但并未在哺乳动物中发生心脏慢跑,这可能类似于斑马鱼心脏慢跑。先前的研究已鉴定出涉及斑马鱼心脏慢跑的30个基因,其中大多数在小鼠和人类中具有明确定义的直系同源物,其中许多直系同源物与哺乳动物早期心脏发育有关。我们对与心脏发育相关的一组特定基因进行了手动管理,并描述了基因本体学术语富集分析的使用,以检查与心脏慢跑相关的细胞过程。我们发现,人类,小鼠和斑马鱼的“慢跑直向同源物”参与了这三个物种的相似器官发育过程,例如心脏,肾脏和神经系统发育,以及更具体的细胞过程,例如纤毛发育和功能。这些分析的结果,除了纤毛在斑马鱼心脏慢跑中的已知作用外,还与纤毛在确定许多内部器官左右不对称性中的作用一致。这项研究突出了模型生物在人类心脏发育研究中的重要性,并强调了整个脊椎动物发育过程的保守性和差异性,以及这种方法的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号