首页> 美国卫生研究院文献>other >How Good Is Crude MDL for Solving the Bias-Variance Dilemma? An Empirical Investigation Based on Bayesian Networks
【2h】

How Good Is Crude MDL for Solving the Bias-Variance Dilemma? An Empirical Investigation Based on Bayesian Networks

机译:粗MDL解决偏差方差难题的效果如何?基于贝叶斯网络的实证研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size.
机译:偏差方差困境是机器学习中一个众所周知的重要问题。它基本上将学习方法的泛化能力(拟合优度)与其相应的复杂性相关联。当我们手头有足够的数据时,可以以某种方式使用这些数据,以最大程度地减少过度拟合(选择泛化能力差的复杂模型的风险)。不幸的是,在许多情况下,我们根本没有所需的数据量。因此,我们需要找到能够有效利用可用数据同时避免过度拟合的方法。已经提出了不同的度量标准来实现此目标:最小描述长度原则(MDL),赤池的信息准则(AIC)和贝叶斯信息准则(BIC)等。在本文中,我们将重点放在粗略的MDL上,并在选择拟合优度和复杂度之间具有良好平衡的模型时凭经验评估其性能:所谓的偏差方差困境,分解或折衷。尽管在机器学习文献中这些维度(偏差和方差)之间的图形交互是普遍存在的,但是很少有作品提出实验证据来恢复这种交互。在我们的实验中,我们争辩说,生成的图使我们获得了难以揭示的见解:原始MDL自然会根据偏差方差选择平衡模型,而不一定需要采用黄金标准的模型。我们使用特定模型(贝叶斯网络)进行这些实验。尽管有这些激动人心的结果,我们也不应忽视可能对最终模型选择产生重大影响的其他三个因素:搜索过程,噪声率和样本量。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号