首页> 美国卫生研究院文献>other >Avalanches in Self-Organized Critical Neural Networks: A Minimal Model for the Neural SOC Universality Class
【2h】

Avalanches in Self-Organized Critical Neural Networks: A Minimal Model for the Neural SOC Universality Class

机译:自组织关键神经网络中的雪崩:神经SOC通用性类的最小模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that may include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.
机译:大脑将其整体动力保持在中间活动的走廊中,这是一个长期存在的问题,究竟什么可能的机制可以完成此任务。长期以来,统计物理学领域的机制一直表明,即使没有中央调节器,也可能仅通过神经元水平上的自组织及其相互作用来实现这种大脑活动的稳态。这种自组织的临界状态的物理机制表现出特征的动力学特征,类似于与地震有关的地震活动。大脑皮层休息活动的测量显示出动态信号的最初迹象,潜在地指向了大脑中自组织的临界动力。确实,最近的更精确的测量结果允许与非平衡临界现象的定标理论进行详细比较,从而证明了皮质动力学的临界性。我们在这里将这种对皮层活动数据的评估与对自组织临界神经网络最早的物理学自旋模型的预测进行了比较。我们发现该模型与最新的实验数据及其在脑部关键性的动态特征方面的解释相匹配。临界特征的签名,雪崩大小和持续时间的幂律分布以及反常指数之间的特定比例关系的组合,定义了在神经实验中观察到的特定临界现象的通用性。因此,该模型是神经关键性普遍性类别的自组织关键自适应网络的最小模型的候选者。作为原型模型,它为可能包含更多生物学细节的模型提供了背景,但它们具有相同的大脑活动平衡能力的通用性。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(9),4
  • 年度 -1
  • 页码 e93090
  • 总页数 8
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号