首页> 美国卫生研究院文献>other >The cutting edges in DNA repair licensing and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice cut once
【2h】

The cutting edges in DNA repair licensing and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice cut once

机译:DNA修复许可和保真度方面的最前沿:DNA和RNA修复核酸酶雕刻DNA进行两次测量一次切割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by Watson-Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure twice these nucleases act as molecular level transformers that typically reshape the DNA and sometimes themselves to achieve extraordinary specificity and efficiency.
机译:为避免基因组不稳定,DNA修复核酸酶必须在获得许可进行切割之前精确靶向正确的受损底物。损伤鉴定是对所有DNA损伤反应蛋白的挑战,但尤其是对于切割DNA并必然产生裂解的DNA修复中间体的核酸酶而言,这种酶可能比初始损伤的毒性更大。这些酶如何在没有特定序列识别的情况下或在某些情况下没有非规范的DNA核苷酸的情况下实现出色的特异性?修复核酸酶的结构,生化和生物学分析相结合,揭示了其分子工具可用于损伤验证和防止意外切口。令人惊讶的是,这些酶也经常作用于RNA,这值得更多的关注。在这里,我们审查了涉及复制,碱基切除修复,错配修复,双链断裂修复(DSBR)和端粒维护的核酸酶的蛋白质-DNA结构:嘌呤/ apyrimidinic核酸内切酶1(APE1),核酸内切酶IV(Nfo),酪氨酸DNA磷酸二酯酶(TDP2),紫外线损伤核酸内切酶(UVDE),极短补丁修复核酸内切酶(Vsr),核酸内切酶V(Nfi),襟翼内切核酸酶1(FEN1),核酸外切酶1(Exo1),RNase T和减数分裂重组11(Mre11)。 DNA和RNA结构敏感的核酸酶在DNA复制,修复和转录中起着至关重要的作用。这些酶越来越多地被用作合成生物学的高级工具以及癌症预后和干预的靶标。目前,它们的结构生物学最全面地用于DNA修复,这对生命也至关重要。 DNA修复酶如何保持基因组保真度是Watson-Crick遗漏的DNA双螺旋结构秘诀之一,目前只有通过结构生物学和突变分析才能阐明。结构揭示了修复核酸酶的基序和机制,这些酶遵循古老的木匠格言:测量两次,切割一次。此外,要进行两次测量,这些核酸酶起着分子水平转换器的作用,通常可以重塑DNA,有时甚至可以重塑自身,从而实现非凡的特异性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号