首页> 美国卫生研究院文献>other >Structural Synaptic Plasticity Has High Memory Capacity and Can Explain Graded Amnesia Catastrophic Forgetting and the Spacing Effect
【2h】

Structural Synaptic Plasticity Has High Memory Capacity and Can Explain Graded Amnesia Catastrophic Forgetting and the Spacing Effect

机译:结构性突触可塑性具有高记忆力可以解释分级失忆灾难性遗忘和间隔效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although already William James and, more explicitly, Donald Hebb's theory of cell assemblies have suggested that activity-dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The basic modeling units are “potential synapses” defined as locations in the network where synapses can potentially grow to connect two neurons. This model generalizes well-known previous models for associative learning based on weight plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely connected networks is quite intuitive: Structural plasticity increases the “effectual network connectivity”, that is, the network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect.
机译:尽管已经有威廉·詹姆斯(William James)和更明确的唐纳德·赫布(Donald Hebb)的细胞组装理论表明,神经元网络的活动依赖性重新接线是学习和记忆的基础,但是在过去的六十年中,大多数关于记忆的理论工作都集中在现有突触的可塑性上。在预有线网络中。过去十年的研究强调,突触连接的结构修饰在成人大脑中很常见,并且与学习和记忆紧密相关。在这里,我们提出了一种通过结构可塑性学习的简约计算模型。基本的建模单元是“潜在突触”,定义为网络中突触可能会增长以连接两个神经元的位置。该模型概括了基于重量可塑性的先前已知的关联学习模型。因此,可以将现有理论应用于分析突触中可以存储多少个存储器以及可以存储多少信息结构可塑性。令人惊讶地,我们发现结构可塑性大大超过了重量可塑性,并且每个突触可实现更高的存储能力。结构可塑性对稀疏连接的网络的结构的影响非常直观:结构可塑性增加了“有效的网络连接性”,即专门支持存储和调用内存的网络布线。此外,这种结构可塑性模型在学习过程中会产生有效连接的梯度,从而解释了各种认知现象,包括渐进性健忘症,灾难性遗忘和间隔效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号