首页> 美国卫生研究院文献>other >Mathematical Model for the Contribution of Individual Organs to Non-Zero Y-Intercepts in Single and Multi-Compartment Linear Models of Whole-Body Energy Expenditure
【2h】

Mathematical Model for the Contribution of Individual Organs to Non-Zero Y-Intercepts in Single and Multi-Compartment Linear Models of Whole-Body Energy Expenditure

机译:全身能量消耗的单室和多室线性模型中单个器官对非零Y截距贡献的数学模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.
机译:能量消耗(EE)对体重和组成的依赖性的数学模型是代谢表型分析的重要工具。 EE在非线性体重测量功能上可在较宽的体重范围内缩放。但是,当在有限的体重范围内考虑时,异速EE曲线表现出“局部线性”。的确,现代EE分析广泛使用了线性模型。这样的模型通常包括一个或两个体重隔室(例如,无脂肪的体重和脂肪的体重)。重要的是,线性EE模型通常包含不确定来源的非零(通常为正)的y截距项,在EE分析讨论中反复出现的主题以及传统的基于比率的EE归一化的混淆源。新兴的线性模型方法根据单个器官的质量(例如肝脏,肾脏,心脏,大脑)量化全身静息EE(REE)。支持单个器官的REE模型假设多器官线性模型可以消除非零的y截距。这在调整REE的体重和组成方面可能具有优势。研究表明,单个器官的REE是总体重的异速函数。我利用单个器官REE的一阶泰勒线性化来建模单个器官对线性REE模型中的全身REE和非零y截距的贡献方式。该模型预测,在单个器官组织水平的REE分析不会消除拦截项。我证明了线性EE方程的参数可以转换为潜在的“潜伏”异速方程的参数。这允许在各种生理状态下估计EE的异速缩放比例,这些生理状态未在异速EE文献中表示,但已通过公开的线性EE分析很好地表示。

著录项

  • 期刊名称 other
  • 作者

    Karl J. Kaiyala;

  • 作者单位
  • 年(卷),期 -1(9),7
  • 年度 -1
  • 页码 e103301
  • 总页数 10
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

  • 入库时间 2022-08-21 11:18:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号