首页> 美国卫生研究院文献>other >Spatial Temperature Mapping within Polymer Nanocomposites Undergoing Ultrafast Photothermal Heating via Gold Nanorods
【2h】

Spatial Temperature Mapping within Polymer Nanocomposites Undergoing Ultrafast Photothermal Heating via Gold Nanorods

机译:通过金纳米棒进行超快光热加热的聚合物纳米复合材料中的空间温度图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm.
机译:在局部表面等离子体共振的超快光激发下,热量从金纳米棒(GNR)发出。使用两种独立的集成光学技术,通过实验确定在嵌入了经过脉冲飞秒光热加热的GNR的聚合物基质中形成的稳态纳米级温度分布。纳米棒的物理旋转揭示了聚合物熔体在其周围的直接空间中的平均局部温度,而均匀分布的per分子的荧光则监测距GNR较大距离的样品区域的温度。 the探针对偏振敏感的荧光测量结果提供了每个纳米棒周围准熔化区域的平均大小的估计值(即,随着温度从每个粒子开始径向降低,软化的聚合物和固体材料之间的边界),并区分了固态和熔体区域的稳态温度。结合这些单独的方法,可以对超快激发GNR引起的平均稳态温度分布进行纳米级空间映射。这些观察结果明确证明了稳态温度梯度的存在,并表明通过材料内的光热效应进行的局部加热可以进行纳米级的热操作,而不会显着改变这些系统中的样品温度。这些定量结果通过在固体聚合物纳米纤维内重新排列纳米棒而不会引起对高度温度敏感的纳米纤维表面的任何形态变化而得到进一步验证。在约100 nm的距离内观察到70 – 90°C的温差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号