首页> 美国卫生研究院文献>other >Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century
【2h】

Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

机译:21世纪全球陆地初级生产对气候变化和大气二氧化碳增加的复杂时空响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2.
机译:关于全球陆地净初级生产(NPP)对气候变化和大气中二氧化碳含量增加的反应的定量信息对于21世纪适应和减缓气候变化至关重要。使用基于过程的生态系统模型(动态土地生态系统模型,DLEM),我们量化了当代(2000年代)全球核电厂的规模和时空变化,并预测了其对21世纪政府间气候变化专门委员会(IPCC)关于排放情景的特别报告(SRES)A2和B1。由于2000-2009年期间的多种因素,我们估计全球陆地NPP为54.6(52.8-56.4)PgC yr -1 。在2010-2099年期间,气候变化将在A2情景下减少全球NPP(4.6%),或在B1情景下稍微提高NPP(2.2%)。为了应对气候变化,全球NPP将首先升高,直到地表气温升高1.5°C(直到2030年代),然后在升高超过1.5°C(2030年代之后)后趋于平稳或下降。该结果支持哥本哈根协议确认书,该书指出,保持在2°C以下可能是不够的,并且有可能希望保持在1.5°C以下。二氧化碳的施肥效应将使21世纪的全球NPP增加12%–13.9%。预计相对CO2施肥效应,即每CO2(ppm)基准上的NPP的变化首先会迅速增加,然后在2070年代趋于稳定,到2080年代末甚至下降,这可能是由于CO2饱和和养分限制所致。在生物群落中,陆地NPP对气候变化和大气CO2升高的反应差异很大,其中苔原和针叶北方落叶林的增幅最大。与低排放情景(B1)相比,高排放情景(A2)会导致NPP的时空变化更大,并导致气候和大气CO2增长的影响更加显着和抵消。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号