首页> 美国卫生研究院文献>other >Biocompatible optically transparent MEMS for micromechanical stimulation and multimodal imaging of living cells
【2h】

Biocompatible optically transparent MEMS for micromechanical stimulation and multimodal imaging of living cells

机译:生物相容的光学透明MEMS用于活细胞的微机械刺激和多峰成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response.
机译:我们体内的细胞和组织不断受到机械压力。机械刺激(例如拉伸力和收缩力以及剪切应力)引起细胞反应,包括决定关键行为(包括增殖,分化,迁移和粘附)的基因和蛋白质改变。已经开发了多种工具和技术来研究这些机械生物学现象,包括微机电系统(MEMS)。 MEMS为生物样品的纳米级至微米级机械刺激以及其生物力学响应的定量分析提供了平台。然而,当前的装置在执行单细胞微机械刺激以及通过成像技术同时关联其结构表型方面的能力受到限制。在这项研究中,报道了一种用于单细胞力学生物学研究的生物相容性和光学透明的MEMS。氮化硅微制造的设备被设计为执行单细胞和组织的单轴拉伸变形。该设备的光学透明性和开放式结构允许MEMS与结构和生物物理分析相结合,包括光学显微镜技术和原子力显微镜(AFM)。我们通过光学和AFM技术演示了设计,制造,测试,生物相容性和多峰成像,为多峰MEMS提供了概念验证。集成的多峰系统将允许同时控制单个细胞的机械刺激并关联细胞反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号