首页> 美国卫生研究院文献>Frontiers in Plant Science >Mechanosensitive control of plant growth: bearing the load sensing transducing and responding
【2h】

Mechanosensitive control of plant growth: bearing the load sensing transducing and responding

机译:机械敏感的植物生长控制:承受负荷感测转换和响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As land plants grow and develop, they encounter complex mechanical challenges, especially from winds and turgor pressure. Mechanosensitive control over growth and morphogenesis is an adaptive trait, reducing the risks of breakage or explosion. This control has been mostly studied through experiments with artificial mechanical loads, often focusing on cellular or molecular mechanotransduction pathway. However, some important aspects of mechanosensing are often neglected. (i) What are the mechanical characteristics of different loads and how are loads distributed within different organs? (ii) What is the relevant mechanical stimulus in the cell? Is it stress, strain, or energy? (iii) How do mechanosensing cells signal to meristematic cells? Without answers to these questions we cannot make progress analyzing the mechanobiological effects of plant size, plant shape, tissue distribution and stiffness, or the magnitude of stimuli. This situation is rapidly changing however, as systems mechanobiology is being developed, using specific biomechanical and/or mechanobiological models. These models are instrumental in comparing loads and responses between experiments and make it possible to quantitatively test biological hypotheses describing the mechanotransduction networks. This review is designed for a general plant science audience and aims to help biologists master the models they need for mechanobiological studies. Analysis and modeling is broken down into four steps looking at how the structure bears the load, how the distributed load is sensed, how the mechanical signal is transduced, and then how the plant responds through growth. Throughout, two examples of adaptive responses are used to illustrate this approach: the thigmorphogenetic syndrome of plant shoots bending and the mechanosensitive control of shoot apical meristem (SAM) morphogenesis. Overall this should provide a generic understanding of systems mechanobiology at work.
机译:随着陆地植物的生长和发展,它们会遇到复杂的机械挑战,特别是来自风和湍流压力的挑战。对生长和形态发生的机械敏感控制是一种适应性特征,可降低破裂或爆炸的风险。这种控制主要是通过人工机械载荷实验研究的,通常集中在细胞或分子机械转导途径上。但是,机械感测的一些重要方面通常被忽略。 (i)不同负荷的机械特性是什么?负荷如何在不同器官内分布? (ii)细胞中相关的机械刺激是什么?是压力,压力还是能量? (iii)机械传感细胞如何向分生细胞发出信号?如果没有这些问题的答案,我们就无法在分析植物大小,植物形状,组织分布和刚度或刺激强度的力学生物学效应方面取得进展。然而,随着使用特定的生物力学和/或力学生物学模型开发系统力学生物学,这种情况正在迅速改变。这些模型有助于比较实验之间的负载和响应,并可以定量测试描述机械转导网络的生物学假设。这篇评论是为一般植物科学读者设计的,旨在帮助生物学家掌握他们进行机械生物学研究所需的模型。分析和建模分为四个步骤,分别研究结构如何承受载荷,如何感测分布式载荷,如何传递机械信号以及植物如何通过生长做出响应。整个过程中,使用两个自适应响应示例来说明这种方法:植物茎弯曲的拟态发生综合征和茎尖分生组织(SAM)形态发生的机械敏感控制。总体而言,这应该提供对工作中的系统力学生物学的一般理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号