首页> 美国卫生研究院文献>other >A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy
【2h】

A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy

机译:在TOPAS中实施器官效应模型的框架其基准已扩展到质子治疗

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this work was to develop a framework for modeling organ effects within TOPAS (TOol for PArticle Simulation), a wrapper of the Geant4 Monte Carlo toolkit that facilitates particle therapy simulation. The DICOM interface for TOPAS was extended to permit contour input, used to assign voxels to organs. The following dose response models were implemented: The Lyman-Kutcher-Burman model, the critical element model, the population based critical volume model, the parallel-serial model, a sigmoid-based model of Niemierko for Normal Tissue Complication Probability (NTCP) and Tumor Control Probability (TCP), and a Poisson-based model for TCP. The framework allows easy manipulation of the parameters of these models and the implementation of other models.As part of the verification, results for the parallel-serial and Poisson model for x-ray irradiation of a water phantom were compared to data from the AAPM Task Group 166. When using the task group dose-volume histograms (DVHs), results were found to be sensitive to the number of points in the DVH, with differences up to 2.4%, some of which are attributable to differences between the implemented models. New results are given with the point spacing specified. When using Monte Carlo calculations with TOPAS, despite the relatively good match to the published DVH’s, differences up to 9% were found for the parallel-serial model (for a maximum DVH difference of 2%) and up to 0.5% for the Poisson model (for a maximum DVH difference of 0.5%). However, differences of 74.5% (in Rectangle1), 34.8% (in PTV) and 52.1% (in Triangle) for the critical element, critical volume and the sigmoid-based models were found respectively.We propose a new benchmark for verification of organ effect models in proton therapy. The benchmark consists of customized structures in the spread out Bragg peak (SOBP) plateau, normal tissue, tumor, penumbra and in the distal region. The DVH’s, DVH point spacing, and results of the organ effect models are provided. The models were used to calculate dose response for a Head and Neck patient to demonstrate functionality of the new framework and indicate the degree of variability between the models in proton therapy.
机译:这项工作的目的是开发一个框架,用于在TOPAS(用于PArticle Simulation的工具)中对器官效应进行建模,该框架是Geant4 Monte Carlo工具包的包装,它有助于进行粒子治疗模拟。扩展了用于TOPAS的DICOM接口,以允许轮廓输入,用于将体素分配给器官。实施了以下剂量反应模型:Lyman-Kutcher-Burman模型,关键要素模型,基于人群的临界体积模型,并行串行模型,Niemierko基于Sigmoid的正常组织并发症概率(NTCP)模型和肿瘤控制概率(TCP),以及基于泊松的TCP模型。该框架可轻松操纵这些模型的参数以及其他模型的实现。作为验证的一部分,将水幻影的X射线平行串行和泊松模型的结果与AAPM任务中的数据进行了比较第166组。使用任务组剂量体积直方图(DVH)时,发现结果对DVH中的点数敏感,差异高达2.4%,其中一些归因于已实施模型之间的差异。使用指定的点间距给出新结果。当与TOPAS一起使用蒙特卡罗计算时,尽管与已发布的DVH的匹配度相对较高,但并行串行模型的差异最大为9%(最大DVH差异为2%),而Poisson模型的最大差异为0.5% (最大DVH差异为0.5%)。但是,对于关键元素,关键体积和基于S形的模型,差异分别为74.5%(在Rectangle1中),34.8%(在PTV中)和52.1%(在Triangle中)。我们提出了一个新的基准来验证器官质子治疗中的效应模型。基准由扩展布拉格峰(SOBP)平台,正常组织,肿瘤,半影和远端区域中的自定义结构组成。提供DVH,DVH点间距以及器官效应模型的结果。该模型用于计算头颈部患者的剂量反应,以证明新框架的功能性并指出质子治疗中模型之间的差异程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号