首页> 美国卫生研究院文献>other >Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons
【2h】

Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons

机译:对I型和II型神经元膜电位如何取决于膜电位去极化率的生物物理学见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt) preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding.
机译:动态尖峰阈值在神经元输入输出关系中起关键作用。在许多神经元中,阈值电位取决于尖峰之前膜电位的去极化率(dV / dt)。根据输入输出特性,神经兴奋性有两个基本类别,即I型和II型。尽管已经建立了其尖峰启动的动力学和生物物理基础,但对于每种细胞类型的尖峰阈值动态的描述尚未很好。在这里,我们使用生物物理模型来研究两种神经元中尖峰阈值如何取决于dV / dt。可以观察到,II型尖峰阈值比I型尖峰阈值更去极化,并且对dV / dt更为敏感。通过相平面分析,我们表明,每个阈值动态源于不同的分离动力学和K +电流动力学。通过分析膜电流的亚阈值特性,我们发现在尖峰启动之前超极化电流的激活是调节阈值动态的主要因素。 I型神经元中的向外K +电流不会在阈值处激活,这使其尖峰阈值对dV / dt不敏感。 II型K +电流在尖峰启动之前被激活,并且在阈值处存在较大的净超极化电流,这会导致去极化阈值以及明显的动态阈值。这些预测在神经兴奋性的其他几种功能等效的情况下得到进一步证明。我们的研究提供了有关固有生物物理特性如何促进I型和II型神经元阈值动态的基本描述,这可能会破译它们在神经编码中的重要功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号