首页> 美国卫生研究院文献>other >Body-In-The-Loop: Optimizing Device Parameters Using Measures of Instantaneous Energetic Cost
【2h】

Body-In-The-Loop: Optimizing Device Parameters Using Measures of Instantaneous Energetic Cost

机译:生命中的身体:使用瞬时能量成本的方法优化设备参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper demonstrates methods for the online optimization of assistive robotic devices such as powered prostheses, orthoses and exoskeletons. Our algorithms estimate the value of a physiological objective in real-time (with a body “in-the-loop”) and use this information to identify optimal device parameters. To handle sensor data that are noisy and dynamically delayed, we rely on a combination of dynamic estimation and response surface identification. We evaluated three algorithms (Steady-State Cost Mapping, Instantaneous Cost Mapping, and Instantaneous Cost Gradient Search) with eight healthy human subjects. Steady-State Cost Mapping is an established technique that fits a cubic polynomial to averages of steady-state measures at different parameter settings. The optimal parameter value is determined from the polynomial fit. Using a continuous sweep over a range of parameters and taking into account measurement dynamics, Instantaneous Cost Mapping identifies a cubic polynomial more quickly. Instantaneous Cost Gradient Search uses a similar technique to iteratively approach the optimal parameter value using estimates of the local gradient. To evaluate these methods in a simple and repeatable way, we prescribed step frequency via a metronome and optimized this frequency to minimize metabolic energetic cost. This use of step frequency allows a comparison of our results to established techniques and enables others to replicate our methods. Our results show that all three methods achieve similar accuracy in estimating optimal step frequency. For all methods, the average error between the predicted minima and the subjects’ preferred step frequencies was less than 1% with a standard deviation between 4% and 5%. Using Instantaneous Cost Mapping, we were able to reduce subject walking-time from over an hour to less than 10 minutes. While, for a single parameter, the Instantaneous Cost Gradient Search is not much faster than Steady-State Cost Mapping, the Instantaneous Cost Gradient Search extends favorably to multi-dimensional parameter spaces.
机译:本文演示了辅助机器人设备(例如动力假肢,矫形器和外骨骼)的在线优化方法。我们的算法实时(借助人体“在回路中”)估算生理目标的价值,并使用此信息来识别最佳设备参数。为了处理嘈杂且动态延迟的传感器数据,我们依赖于动态估计和响应面识别的组合。我们评估了八名健康人类受试者的三种算法(稳态成本映射,瞬时成本映射和瞬时成本梯度搜索)。稳态成本映射是一项成熟的技术,可将三次多项式拟合为不同参数设置下的稳态度量的平均值。最佳参数值由多项式拟合确定。通过连续扫描一系列参数并考虑到测量动态,瞬时成本映射可以更快地识别三次多项式。瞬时成本梯度搜索使用类似的技术,通过使用局部梯度的估计来迭代逼近最佳参数值。为了以一种简单且可重复的方式评估这些方法,我们通过节拍器指定了步进频率,并优化了该频率以最大程度地降低代谢能量消耗。这种步进频率的使用可以将我们的结果与已建立的技术进行比较,并使其他人能够复制我们的方法。我们的结果表明,所有三种方法在估计最佳步进频率时均达到相似的精度。对于所有方法,预测的最小值与受试者的首选步频之间的平均误差小于1%,标准偏差在4%至5%之间。使用瞬时成本映射,我们能够将受试者的步行时间从一个多小时减少到不到10分钟。虽然对于单个参数,瞬时成本梯度搜索不会比稳态成本映射快很多,但是瞬时成本梯度搜索可以很好地扩展到多维参数空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号