首页> 美国卫生研究院文献>other >Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays
【2h】

Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays

机译:水使石墨烯皱纹变平:将石墨烯激光冲击包裹在衬底支撑的晶体等离激元纳米颗粒阵列上

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace level. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species diffuse and react with the materials, decrease charge transfer rate and block intense hot-spots. No ex-situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decrease the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays, by exploiting a shock pressure generated by laser ablation of graphite and water impermeability nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities are investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, chemical/thermal stability, instantaneous, scale and room temperature processing capability, and can be further extended to integrate other 2D material with various 0-3D nanomaterials.
机译:可以在石墨烯-等离激元纳米天线混合纳米系统中实现将热电子注入到异常高迁移率的材料中,可以将其用于多种前沿应用,包括光伏,等离激元波导和痕量水平的分子传感。但是,石墨烯在这些等离激元纳米结构上的起皱不稳定性将导致活性氧或硫物质扩散并与材料发生反应,降低电荷转移速率并阻塞强烈的热点。迄今为止,尚未研究过异位石墨烯包裹技术来控制这些皱纹。在这里,我们提出了一种通过使用水作为传单来产生无缝集成的方法,以转移激光冲击压力将石墨烯包裹在等离子体纳米晶体上。通过利用石墨的激光烧蚀产生的冲击压力和石墨烯的不透水性,该技术减小了石墨烯与被覆盖的衬底支撑的等离激元纳米颗粒阵列之间的界面间隙。研究了化学合成的晶体金纳米球,纳米棒和双锥体的石墨烯包裹物,它们具有不同的域限制能力。结合实验和计算方法,包括SEM和AFM形态研究,分子动力学模拟和拉曼光谱表征,证明了该技术的有效性。在研究的杂化纳米系统中,石墨烯覆盖的金双金字塔表现出最好的结果。我们已经表明,通过激光冲击制造的混合系统可用于增强分子感测。所开发的技术具有紧密集成,化学/热稳定性,瞬时,规模和室温处理能力的特征,并且可以进一步扩展以将其他2D材料与各种0-3D纳米材料集成在一起。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号