首页> 美国卫生研究院文献>other >Conformational changes of an ion–channel during gating and emerging electrophysiologic properties: application of a computational approach to cardiac Kv7.1
【2h】

Conformational changes of an ion–channel during gating and emerging electrophysiologic properties: application of a computational approach to cardiac Kv7.1

机译:门控和新兴电生理特性过程中离子通道的构象变化:一种计算方法在心脏Kv7.1中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ion channels are the “building blocks” of the excitation process in excitable tissues. Despite advances in determining their molecular structure, understanding the relationship between channel protein structure and electrical excitation remains a challenge. The Kv7.1 potassium channel is an important determinant of the cardiac action potential and its adaptation to rate changes. It is subject to beta adrenergic regulation, and many mutations in the channel protein are associated with the arrhythmic long QT syndrome. In this theoretical study, we use a novel computational approach to simulate the conformational changes that Kv7.1 undergoes during activation gating and compute the resulting electrophysiologic function in terms of single-channel and macroscopic currents. We generated all possible conformations of the S4–S5 linker that couples the S3–S4 complex (voltage sensor domain, VSD) to the pore, and all associated conformations of VSD and the pore (S6). Analysis of these conformations revealed that VSD-to-pore mechanical coupling during activation gating involves outward translation of the voltage sensor, accompanied by a translation away from the pore and clockwise twist. These motions cause pore opening by moving the S4–S5 linker upward and away from the pore, providing space for the S6 tails to move away from each other. Single channel records, computed from the simulated motion trajectories during gating, have stochastic properties similar to experimentally recorded traces. Macroscopic current through an ensemble of channels displays two key properties of Kv7.1: an initial delay of activation and fast inactivation. The simulations suggest a molecular mechanism for fast inactivation; a large twist of the VSD following its outward translation results in movement of the base of the S4–S5 linker toward the pore, eliminating open pore conformations to cause inactivation.
机译:离子通道是可激发组织中激发过程的“基础”。尽管在确定它们的分子结构方面取得了进步,但是了解通道蛋白结构和电激发之间的关系仍然是一个挑战。 Kv7.1钾通道是心脏动作电位及其对心率变化的适应性的重要决定因素。它受到β肾上腺素的调节,通道蛋白中的许多突变都与心律不齐的长QT综合征有关。在这项理论研究中,我们使用一种新颖的计算方法来模拟Kv7.1在激活门控期间经历的构象变化,并根据单通道和宏观电流计算所得的电生理功能。我们生成了将S3–S4复合体(电压传感器域,VSD)耦合到孔的S4–S5接头的所有可能构象,以及VSD和孔(S6)的所有相关构象。对这些构象的分析表明,在激活门控过程中,VSD与孔之间的机械耦合涉及电压传感器的向外平移,并伴随着远离孔的平移和顺时针扭曲。这些运动通过向上移动S4-S5接头并使其远离孔,从而导致孔打开,从而为S6尾巴彼此远离提供了空间。门控期间从模拟运动轨迹计算出的单通道记录具有与实验记录的轨迹相似的随机特性。通过通道整体的宏观电流显示出Kv7.1的两个关键特性:激活的初始延迟和快速的灭活。模拟表明了快速失活的分子机制。 VSD向外翻译后发生大的扭曲会导致S4–S5接头的碱基向毛孔移动,消除开孔构象,从而导致失活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号