首页> 美国卫生研究院文献>other >Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation
【2h】

Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation

机译:正弦误差摄动揭示了感觉运动适应的多个坐标系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation. Motor adaptation is fundamental to the neural control of movement, affording an automatic process to maintain a consistent relationship between motor plans and movement outcomes. That is, adaptation is described as updating an internal mapping between desired motor outcome and motor output (; ), not a deliberate corrective action. Here, using a method that relies on extremely small perturbations that are unlikely to recruit explicit corrective mechanisms, we revisit one of the central questions of sensory-motor adaptation: coordinate encoding.
机译:坐标系由定义空间尺寸的编码和原点组成。我们研究了在感觉运动适应中心向外的过程中用于更新运动计划的坐标编码。适应是使用一种新颖的范例进行的,在该范例中,在试验过程中按照正弦波模式干扰了到达终点的反馈。反馈的扰动维数是在一个会话中的笛卡尔坐标系的轴和在另一会话中的极坐标系的轴。对于中心向外到达随机选择的目标位置的情况,在一个目标上观察到的到达误差将需要在笛卡尔编码和极坐标编码系统内的其他目标上进行不同的校正。正弦波自适应技术使我们能够同时自适应每个坐标系的两个维度(x-y,或到达增益和角度),并通过在不同的时间频率上自适应每个维度来识别每个扰动维度的贡献。这种技术的效率进一步使我们能够采用通常所使用大小的一小部分扰动,从而避免了自动适应性过程与对明显的实验操作做出有意调整的混淆。受试者在两个疗程中均独立纠正了每个坐标中的错误,这表明神经系统对基于笛卡尔坐标和极坐标的内部表示进行编码,以进行运动适应。自适应反应的增益和相位滞后不容易通过当前的感觉运动适应理论来解释。运动适应是运动神经控制的基础,它提供了一个自动过程来维持运动计划和运动结果之间的一致关系。也就是说,适应性描述为更新期望的运动结果和运动输出(;)之间的内部映射,而不是故意的纠正措施。在这里,我们使用一种依赖于极小的扰动的方法,这种扰动不可能招募明确的纠正机制,因此,我们重新审视了感觉运动适应的中心问题之一:坐标编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号