首页> 美国卫生研究院文献>other >Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering
【2h】

Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering

机译:进入组学时代:生物材料科学与工程的机遇与挑战

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field.
机译:生物材料科学和工程学的研究范式正在从使用低通量和迭代实验设计演变为用于材料优化和材料性能评估的高通量实验设计。计算科学在这一转变中起着重要作用。随着在生物材料领域中的组学方法的出现,即所谓的materiomics,高通量方法有望解决材料的复杂性并了解材料特性及其对复杂生物系统的影响之间的相关性。生物系统的内在复杂性是一个重要因素,当表征对材料的生物反应并建立特性与活性之间的关系时,通常会过于简化。确实,由于我们无法在体外模型中捕捉到整个组织的生物学复杂性,因此设计用于预测给定生物材料的体内性能的体外测试已大大缺乏。在这篇意见书中,我们解释了我们如何得出我们的观点,即将基因组学和材料学融合到一个新领域将极大地促进新的和改进的医疗设备的发展。将高通量基因表达谱与高通量组合材料设计策略相关联的计算模型的使用将为分析材料特性引起的生物学效应增加动力。我们认为,高通量材料实验之上的这一额外的复杂性层对于解决生物复杂性并进一步推动生物材料领域是必不可少的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号