首页> 美国卫生研究院文献>other >Mechanisms and Microenvironment Investigation of Cellularized High Density Gradient Collagen Matrices via Densification
【2h】

Mechanisms and Microenvironment Investigation of Cellularized High Density Gradient Collagen Matrices via Densification

机译:致密化细胞高密度梯度胶原蛋白基质的机理与微环境研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological tissues and biomaterials are often defined by unique spatial gradients in physical properties that impart specialized function over hierarchical scales. The structure and organization of these materials forms continuous transitional gradients and discrete local microenvironments between adjacent (or within) tissues, and across matrix-cell boundaries, which can be difficult to replicate with common scaffold systems. Here, we studied the matrix densification of collagen leading to gradients in density, mechanical properties, and fibril morphology. High-density regions formed via a fluid pore pressure and flow-driven mechanism, with increased relative fibril density (10×), mechanical properties (20×, to 94.40±18.74kPa), and maximum fibril thickness (1.9×, to >1μm) compared to low-density regions, while maintaining porosity and fluid/mass transport to support viability of encapsulated cells. Similar to the organization of the articular cartilage zonal structure, we found that high-density collagen regions induced cell and nuclear alignment of primary chondrocytes. Chondrocyte gene expression was maintained in collagen matrices, and no phenotypic changes were observed as a result of densification. Densification of collagen matrices provides a unique, tunable platform for the creation of gradient systems to study complex cell-matrix interactions. These methods are easily generalized to compression and boundary condition modalities useful to mimic a broad range of tissues.
机译:生物组织和生物材料通常由物理特性的独特空间梯度来定义,这些梯度在层次尺度上赋予特定的功能。这些材料的结构和组织在相邻(或内部)组织之间以及跨基质-细胞边界形成连续的过渡梯度和离散的局部微环境,这可能很难用普通的支架系统复制。在这里,我们研究了导致密度,机械性能和原纤维形态梯度变化的胶原蛋白基质致密化。通过流体孔隙压力和流动驱动机制形成的高密度区域,具有相对较高的原纤维密度(10×),机械性能(20×,至94.40±18.74kPa)和最大原纤维厚度(1.9×,至>1μm) )与低密度区域相比,同时保持孔隙率和流体/质量传输,以支持封装细胞的生存能力。类似于关节软骨区域结构的组织,我们发现高密度胶原蛋白区域诱导原代软骨细胞的细胞和核排列。在胶原蛋白基质中软骨细胞基因的表达得以维持,致密化未见表型变化。胶原蛋白基质的致密化为创建梯度系统以研究复杂的细胞-基质相互作用提供了独特的可调平台。这些方法很容易推广到可用于模拟广泛组织的压缩和边界条件模态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号