首页> 美国卫生研究院文献>other >Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model
【2h】

Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model

机译:确定氧化铁纳米粒子的加热效率并阐明局部纳米粒子的温度以用于基于琼脂糖凝胶的肿瘤模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic iron oxide nanoparticles (MNPs) have been developed for magnetic fluid hyperthermia (MFH) cancer therapy, where cancer cells are treated through the heat generated by application of a high frequency magnetic field. This heat has also been proposed as a mechanism to trigger release of chemotherapy agents. In each of these cases, MNPs with optimal heating performance can be used to maximize therapeutic effect while minimizing the required dosage of MNPs. In this study, the heating efficiencies (or specific absorption rate, SAR) of two types of MNPs were evaluated experimentally and then predicted from their magnetic properties. MNPs were also incorporated in the core of poly(ethylene glycol-b-caprolactone) micelles, co-localized with rhodamine B fluorescent dye attached to polycaprolactone to monitor local, nanoscale temperatures during magnetic heating. Despite a relatively high SAR produced by these MNPs, no significant temperature rise beyond that observed in the bulk solution was measured by fluorescence in the core of the magnetic micelles. MNPs were also incorporated into a macro-scale agarose gel system that mimicked a tumor targeted by MNPs and surrounded by healthy tissues. The agarose-based tumor models showed that targeted MNPs can reach hyperthermia temperatures inside a tumor with a sufficient MNP concentration, while causing minimal temperature rise in the healthy tissue surrounding the tumor.
机译:磁性氧化铁纳米粒子(MNP)已开发用于磁流体热疗(MFH)癌症治疗,其中癌细胞通过施加高频磁场产生的热量进行治疗。还提出了这种热量作为触发化学治疗剂释放的机制。在每种情况下,具有最佳加热性能的MNP均可用于最大化治疗效果,同时将所需的MNP剂量降至最低。在这项研究中,对两种类型的MNP的加热效率(或比吸收率,SAR)进行了实验评估,然后根据其磁性能进行了预测。 MNPs也掺入了聚(乙二醇-b-己内酯)胶束的核心,与附着在聚己内酯上的若丹明B荧光染料共定位,以监测磁加热过程中的局部纳米级温度。尽管这些MNP产生的SAR相对较高,但通过磁微胶粒核心中的荧光无法测量到超过本体溶液中观察到的明显升高的温度。 MNP也被并入了大型琼脂糖凝胶系统中,该系统模拟了MNP靶向并被健康组织包围的肿瘤。基于琼脂糖的肿瘤模型表明,靶向的MNP可以以足够的MNP浓度达到肿瘤内部的高温,同时在肿瘤周围的健康组织中引起最小的温度升高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号